Название: Экология. Природа - Человек - Техника - Акимова Т.А.

Жанр: Экология

Рейтинг:

Просмотров: 1042


Для равновесия в биосфере огромное значение имеет глобальная степень замкнутости биотического круговорота. Круговорот полностью замкнут, когда существует точное равенство сумм прямых и обратных расходов: . Если же в каком-то из процессов наблюдается прирост или утечка («дефект замкнутости») Dq, то замкнутость круговорота d выражается отношением

 

                             (3.4)

 

Тогда величина разомкнутости круговорота

 

                       (3.5)

 

Эти величины можно выразить и иначе, сопоставляя продолжительность поддержания равенства расходов Т со временем исчерпания массы вещества DТ при полной остановке процесса восстановления.

Круговорот углерода. Главным участником биотического круговорота является углерод как основа органических веществ. Схема глобального круговорота углерода показана на рис. 3.5. Масса углерода в биосфере в настоящее время составляет около 4000 Гт. Из них 1000 Гт приходится на биомассу. Ежегодная нетто-биопродукция биосферы по углероду составляет - 90-100 Гт. Такое же количество углерода освобождается в процессах дыхания и деструкции. Следовательно, период обновления биомассы биосферы по углеродусоставляет 10 лет. Несмотря на то, что фотосинтез и деструкция органики проходят множество промежуточных этапов и обусловлены деятельностью колоссального числа различных организмов и экосистем, их равенство в биосфере в целом поддерживается с исключительно высокой точностью.

Запас углерода СО2 в атмосфере равен 700 Гт. Поток синтеза и разложения органического углерода 90-100 Гт/год. Если представить, что биотический возврат углерода в атмосферу прекратился («глобальная остановка дыхания»), а фотосинтез продолжается в прежнем объеме, то атмосфера полностью очистилась бы от СО2 за 7-8 лет. Но, по различным данным, газовый состав атмосферы (в том числе содержание СО2) в пределах колебаний современных величин оставался постоянным на протяжении по меньшей мере 104 лет. Отсюда минимальная замкнутость биотического круговорота углерода для атмосферы

 

 

 

 

Рис. 3.5. Глобальный круговорот углерода

Резервуары - в Гт, потоки- в Гт/год

 

Детальный количественный анализ круговорота углерода в экосфере провел В.Г.Горшков (1990). Он отмечает, что согласно геологическим данным концентрации биогенных элементов могут изменяться на 100% за время порядка 100 тыс. лет. За десятки и сотни миллионов лет при отсутствии регуляции эти концентрации вышли бы за пределы, совместимые с жизнью. В действительности, по палеохимическим и палеоботаническим данным, концентрация углерода в атмосфере за время 105 лет сохраняет порядок величины. Следовательно, потоки синтеза и распада органических веществ в биосфере совпадают с точностью 10-4, замкнуты с точностью 10'3 и, значит, скоррелированы с точностью 10-7. В.Г.Горшков пишет: «Скоррелированность синтеза и распада с такой точностью доказывает наличие биологической регуляции окружающей среды, ибо случайная связь величин с такой точностью в течение миллионов лет невероятна». На схеме (рис. 3.5) показано также вмешательство антропогенных воздействий в биосферный круговорот углерода.

Круговорот азота (рис.3.6). Азот входит в структуру всех белков и вместе с тем является наиболее лимитирующим из биогенных элементов. Колоссальный резерв свободного молекулярного азота в атмосфере лишь в ничтожной мере затрагивается биотическим круговоротом. Общее отношение связанного азота к N2 в природе равно 1:100000. Энергия химической связи в молекуле N2 очень велика. Поэтому соединение азота с другими элементами - кислородом или водородом (процесс азотофиксации) - требует больших затрат энергии. Промышленная фиксация азота идет в присутствии катализаторов при температуре – 500о и давлении - 300 атм.

 

Рис. 3.6. Круговорот азота

 

В биосфере фиксация азота осуществляется несколькими группами анаэробных бактерий и цианобактерий при нормальных температуре и давлении благодаря высокой эффективности биокатализа. Считается, что бактерии переводят в связанную форму приблизительно 1 млрд т азота в год (мировой объем промышленной фиксации - около 90 млн т). В клубеньковых бактериях бобовых растений фиксация азота осуществляется с помощью сложного ферментного комплекса, защищенного  от  избытка  кислорода  специальным  растительным гемоглобином. Непосредственный продукт биофиксации - аминогруппа NH2 - включается в круговорот, в котором участвуют уже все организмы, но главную роль играют еще три группы почвенных и водных бактерий: нитрифицирующие, нитратообразующие и денитрифицирующие бактерии (рис. 3.6). Продукты жизнедеятельности первых двух видов бактерий - нитриты и нитраты, а также соли аммония - составляют основу азотного питания растений, которые образуют аминокислоты, пептиды и белки. Проходя через обмен веществ на всех трофических уровнях, эти соединения разлагаются с освобождением NH4+ и цикл повторяется. Денитрифицирующие бактерии переводят избыток нитратов в молекулярный азот.

Круговорот азота в биосфере сопряжен с круговоротом углерода, так как соотношение между этими элементами в составе глобальной биомассы постоянно: С : N = 55 : 1. Соответственно и круговорот азота составляет около 1,5 Гт/год. Он замкнут настолько, насколько постоянны общая биомасса и состав экосферы, так как доступные для биоты резервуары связанного азота в почве и в воде достаточно велики по сравнению с круговоротом: приблизительно 40.: 1.


Оцените книгу: 1 2 3 4 5