Название: Экология - Степановский А.С.

Жанр: Экология

Рейтинг:

Просмотров: 2288


 

Температурный оптимум большинства живых организмов находится в пределах 20—25 С, и лишь у обитателей жарких, сухих районов температурный оптимум жизнедеятельности находится несколько выше 25—28°С. Например, некоторые прямокрылые (кузнечики) проявляют полуденную активность в условиях пустыней Палестины при температуре 40°С и выше.

Для организмов умеренных и холодных зон России оптимальные температуры от 10 до 20°С. Так, у ветреницы дубравной процесс фотосинтеза наиболее интенсивно протекает при 10°С.

В зависимости от ширины интервала температуры, в которой данный вид может существовать, организмы делятся на эвритермные и стенотермные. Эвритермные организмы выдерживают широкие колебания температуры, стенотермные живут лишь в узких пределах.

К эвритермным относится большинство организмов районов с континентальным климатом. Многие из них имеют покоящие стадии, переносящие особенно широкий диапазон температуры (покоящиеся яйца, цисты, куколки насекомых, находящиеся в состоянии анабиоза, взрослые животные, споры бактерий, семена растений).

Беспозвоночные, рыбы, амфибии и рептилии лишены способности поддерживать температуру тела в узких границах. Их называют пойкилотермными (от греч. poikilos — разный). Данных животных часто называют также эктотермными, так какони больше зависят от тепла, поступающего извне, чем от того тепла, которое образуется в обменных процессах. Характерна низкая интенсивность обмена и отсутствие механизма сохранения тепла. Раньше этих животных обычно называли холодокровными, но этот термин неточен и может вводить в заблуждение.

Птицы и млекопитающие способны поддерживать достаточно постоянную температуру тела независимо от окружающей температуры. Этих животных называют гомойотермными (от греч. homoios — подобный) или, по старой терминологии, что менее правильно, теплокровными. Гомойотермные животные относительно мало зависят от внешних источников тепла. Благодаря высокой интенсивности обмена у них вырабатывается достаточное количество тепла, которое может сохраняться. Поскольку эти животные существуют за счет внутренних источников тепла, их называют в настоящее время чаще эндотермными.

Растения и животные в ходе длительного эволюционного развития, приспосабливаясь к периодическим изменениям температурных условий, выработали в себе различную потребность к теплу в разные периоды жизни. Например, прорастание семян растений происходит при более низких температурах, чем последующий их рост. Семена пшеницы, овса, ячменя прорастают при 1—2°С, всходы же появляются при 4—5^0. В период цветения растениям, как правило, необходимо больше тепла, чем в период созревания семян, плодов. Томаты лучше растут и развиваются, когда температура днем 25—26 °С, ночью 17—18°С. Температурный оптимум живых организмов зависит и от других экологических факторов. Установлено, что при полном освещении и избытке углекислого газа в воздухе оптимальная температура фотосинтеза 30 °С, а при слабом освещении и недостатке углекислого газа она снижается до 10°С (рис. 4.8).

При характеристике температуры необходимо различать температуру воздуха и температуру почвы, разность между ними. Для растений это особенно важно, так как они способны поглощать питательные вещества из почвы при условии, если температура почвы будет на несколько градусов ниже температуры воздуха. Например, гречиха достигает наилучшего развития, когда температура близ корней равнг. 10°С, а у надземных частей 22°С. При температуре почвы и воздуха 22°С состояние растений резко ухудшается, и они не дают цветков. При дальнейшем повышении температуры почвы до 34°С, когда надземные органы остаются при 22°С, у растений наблюдается отмирание верхушек почек, стеблей, а впоследствии погибает все растение.

 

           

 

Рис. 4.8. Соотношение между фотосинтезом и дыханием

    в зависимости от температур

 

При оптимальных температурах у всех организмов физиологические процессы протекают наиболее интенсивно, что способствует увеличению темпов их роста. Здесь к биологическим процессам вполне приемлемо правило Вант-Гоффа (Т.А. Акимова, В.В. Хаскин, 1998).

Так, если скорость Vт реакции измерена при двух температурах Т1 и Т2, причем Т1 < Т2, то температурный коэффициент Вант-Гоффа:

                                     

Зависимость скорости реакции от температуры может быть выражена уравнением Аррениуса:

                                        (4.2)

где    АV — фактор частоты событий, называемый также константой Аррениуса;

Е* — энергия активации данной реакции (Дж/моль), необходимая для преодоления потенциального барьера реакции;

R — газовая постоянная [8,3144 Дж/(моль . К)];

Т — абсолютная температура, К.

В диапазоне температур 15 — 40 °С (288—313 К) значения Q,g большинства биохимических процессов лежат между 1,5 и 2,5, а значения Е* — между 30 и 65 кДж/моль.

Исходя из этого правила скорость химических реакций возрастает в 2—3 раза при повышении температуры на каждые 10°С. При температурах выше или ниже оптимальных скорость биохимических реакций в организме снижается или вообще нарушается. И как итог — замедление темпов роста и даже гибель организма.

В пределах от верхних оптимальных до верхних максимальных и от нижних минимальных до нижних оптимальных температур лежат диапазоны верхнего и нижнего пессимумов. Развитие растений при температурном пессимуме осуществляется замедленными темпами и затягивается на длительное время.

Активность животных также ограничивается пессимумами. У насекомых повышение температуры вызывает вначале медленные, некоординированные движения, в физиологической области (оптимум) приводит к полностью управляемой активности, а при дальнейшем повышении — к чрезмерно быстрым, некоординированным, суматошным движениям. Так, муха цеце при температуре ниже 8°С неподвижна, при 10°С начинает бегать, выше 14°С при дополнительном раздражении взлетает, а выше 21°С летает сонливо.


Оцените книгу: 1 2 3 4 5