Название: Экологическая безопасность - Гринин А.С.

Жанр: Экология

Рейтинг:

Просмотров: 1557


 

Для получения управляемой термоядерной реакции ученые пошли несколькими путями. Один из них привел к созданию токамака, другой - к схеме реактора с «открытой» ловушкой. В 1968 г. токамак потряс мир многообещающими результатами, и основные средства стали вкладывать именно в это направление. Но сторонники второго пути считают свою схему предпочтительней: сердцевину реактора с открытой ловушкой изготовить значительно проще (его вакуумную камеру можно выточить на токарном станке); такие реакторы проще ремонтировать (они не требуют разборки, как круглые токамаки); на основе открытой ловушки легче создать реакторы нового поколения (безнейтронные, радиоактивно безопасные). Ученые Академгородка в Новосибирске продемонстрировали установки ГОЛ-3 - 12-метровую ловушку, где плазма нагревается электронным пучком, и АМБАЛ-М, которая удерживает плазму в продольном направлении за счет электростатического потенциала. В феврале 1967 г. в космос была запущена первая в мире орбитальная термоэмиссионная ядерная энергетическая установка «Топаз» («Термоэмиссионный опытный преобразователь в активной зоне»), в которой энергия ядерного распада непосредственно превращается в электрический ток. А в июле 1987 г. в космос была выведена вторая подобная установка, проработавшая тамбольше года. «Топаз» создавался трудами ученых Физико-энергетического института (ФЭИ) в Обнинске.

Особенностью ядерного реактора на быстрых нейтронах (Р-Р) является его способность производить ядерного топлива больше, чем он сам потребляет. При этом стержни урана-238 помещают в зону воспроизводства (кольцом охватывающую активную зону). Здесь из-за воздействия нейтронов часть атомов U-238 превращается в атомы Ри-239. Если эту смесь (U-238 и Ри-239) поместить в активную зону, то при ее «сгорании» получится «оружейный» плутоний, так как произойдет обогащение природного урана. Эти циклы можно повторять несколько раз и получить электроэнергии в 40 раз больше, чем в реакторе на медленных нейтронах. К тому же Р-Р имеет значительно более высокий КПД по сравнению с реактором на медленных нейтронах. Он эффективней использует ядерное топливо, дает меньше РА отходов и работает при более низком давлении, то есть менее вероятна его разгерметизация («утечка»). Но ему присущ и серьезный недостаток: от воздействия быстрых нейтронов происходит «ослабление» металла (сталь набухает и становится хрупкой). Р-Р «всеядны»: только они способны перерабатывать любое ядерное топливо и отходы, уничтожать высвобождающийся при разоружении плутоний.

Один из основных лидеров в области разработки реакторов на быстрых нейтронах - ФЭИ (г. Обнинск). Его экспериментальный реактор БР-10 с давних пор является серьезным конкурентом знаменитому токамаку. ФЭИ имеет крупнейший в мире стенд для проведения исследований в области атомной энергетики.

Первый в мире промышленный Р-Р был построен в г. Шевченко. Это был БН-350, а на Белоярской АЭС с 1980 г. действует БН-600. Сейчас это единственный в мире реактор, способный превращать оружейный плутоний в электроэнергию. В 1994 г. на Южно-Уральской АЭС планировалось пустить первый из трех запланированных БН-800.

Опыт эксплуатации АЭС показал, что наиболее опасны водо-водяные двухконтурные реакторы - из-за «протечек» в результате дефектов используемого при строительстве материала, в местах соединения, в системе охлаждения, из-за коррозии в парогенераторе, ошибок персонала. Может быть нарушена герметичность стержней, а также их перегрев, в результате чего выделяющийся из воды водород способен взрываться. Не исключен разрыв реактора из-за огромного давления образовавшегося водяного пара с выбросом РА продуктов ядерной реакции. Серьезную опасность представляют и хранящиеся на АЭС в жидком состоянии РА отходы, так как гарантийный срок службы бетонных емкостей составляет 40 лет и на многих АЭС он близок к окончанию. РА отходы в тысячи раз вреднее урановой руды, поскольку представляют собой мельчайшую пыль, которая малейшим ветром разносится на огромные площади, заражая их на сотни лет и создавая там высокий уровень радиации.

Для хранения отходов применяют специализированные хранилища. Один реактор мощностью 1000 МВт ежегодно превращает 30 т уранового топлива в РА отходы. С 21 АЭС ФРГ ежегодно снимают 300 т использованных тепловыделяющих элементов. На 1986 г. в США хранил ось более 12 000 т отработанных тепловыделяющих элементов, а к 2000 г. их ожидается до 55 000 т.

Существует много способов захоронения РА отходов, но абсолютно надежного до сих пор не найдено. Только недавно отказались от закачки жидких РА отходов в глубокие скважины (испорчено много артезианских колодцев). Приходится отказываться от их затопления в морях Тихого, Атлантического и Северного Ледовитого океанов. Не обеспечивается безопасность и в специальных хранилищах (могильниках, спецполигонах), построенных даже со строго определенным горизонтом грунта и представляющих весьма сложный инженерный комплекс. Контейнеры с РА отходами делают герметичными. Могильники требуют отчуждения огромной территории. В них же закладывают РА отходы от организаций. Отходы от реакторов ВР-400 направляются на переработку для извлечения урана или плутония, который возвращается в ЯТЦ. Остатки от регенерации хранят остеклованными в бетонных хранилищах.

Отправка РА отходов в глубины космоса тоже не выход: авария любой ракеты при выводе на орбиту приведет к распылению плутония, летальная доза которого составляет 0,01 г. Не менее опасны и «мирные» атомные взрывы для строительства газо- и нефтехранилищ, создания озер, поворота рек.

Основным поражающим фактором при аварии на РАОО, кроме пожаров и взрывов, является радиоактивное заражение. Радиоактивные вещества не имеют запаха, цвета, вкуса, не улавливаются органами чувств. Радиация - это результат изменения структуры атома, свойство атомных ядер самопроизвольно распадаться из-за внутренней неустойчивости и вызывать ионизацию среды. Различают несколько видов излучений, возникающих при распаде ядер.

α-частицы - поток ядер гелия. Их заряд +2, масса 4, то есть для микромира это очень тяжелая частица, которая быстро находит себе мишень. После ряда столкновений α-частица теряет энергию и захватывается каким-нибудь атомом. Их взаимодействие аналогично соударению бильярдных шаров или электрических зарядов. Внешнее облучение от таких частиц незначительно, но они крайне опасны при попадании внутрь организма.

β-частицы - поток электронов (позитронов), их заряд равен -1 (или +1), а масса в 7,5 тысячи раз меньше, чем у α-частицы. β-частице труднее найти мишень в облучаемой среде, так как она воздействует в основном только своим электрическим зарядом. Внешнее облучение при этом не велико ((3-частицы задерживаются оконным стеклом).

γ-излучение - это высокочастотное электромагнитное излучение. Поскольку полной защиты от него обеспечить невозможно, то используют экраны из материалов, способных ослаблять поток излучения. Если материал ослабляет поток в 2 раза, то говорят, что он обладает коэффициентом половинного ослабления. Именно этот коэффициент и используют на практике.


Оцените книгу: 1 2 3 4 5