Название: Эволюция жизни - Иорданский Н.Н.

Жанр: Биология

Рейтинг:

Просмотров: 888


 

 

 

 

 

 

 

 

 

 

 

 

ГЛАВА 1.

ЭЛЕМЕНТАРНЫЕ ПРЕДПОСЫЛКИ

ЭВОЛЮЦИОННОГО ПРОЦЕССА:

ФОРМЫ ИЗМЕНЧИВОСТИ ОРГАНИЗМОВ

 

Эволюция основывается прежде всего на возникновении наследственных изменений организмов, которые представляют собой необходимый исходный материал для осуществления эволюционного процесса и, таким образом, являются элементарными предпосылками последнего. Особую роль в приспособлении биологических видов к изменяющимся условиям внешней среды играют и ненаследственные изменения организмов. Для выяснения природы разных форм изменчивости организмов, их соотношений друг с другом и для анализа их эволюционной роли нам необходимо сначала хотя бы кратко остановиться на рассмотрении сущности наследственности.

 

Современные представления о

наследственности организмов

 

Наследственность организмов, под которой понимается способность передавать от поколения к поколению основные структурные и функциональные свойства, обеспечивающие сходство организации потомков и их родителей, представляет собой одно из фундаментальных качеств живых организмов. Само по себе явление наследственности чрезвычайно давно известно людям, но сущность этого важнейшего свойства организмов стала понятной лишь в середине XX в., когда была доказана роль хромосомной дезоксирибонуклеиновой кислоты (ДНК) в передаче наследственных свойств,а в 1953 г. Дж.Уотсоном и Ф. Криком была расшифрована структура молекулы ДНК.

Хромосомы состоят из молекул ДНК, рибонуклеиновой кислоты (РНК) и некоторых типов белков. Основную роль в аппарате наследственности играет ДНК. Согласно модели Уотсона и Крика, молекула ДНК состоит из двух полинуклеотидных цепочек (рис. 6), спирально закрученных вокруг общей оси. Каждый отдельный нуклеотид включает молекулу (точнее, молекулярный остаток) сахара-циклопентозы (в ДНК — дезоксирибоза) и связанные с ней молекулярные остатки фосфорной кислоты и одного из азотистых оснований (пуриновых — аденина и гуанина, или пиримидиновых — тимина и цитозина). Нуклеотиды связаны друг с другом в полинуклеотидную цепочку, а две соседние полинуклеотидные цепочки связаны друг с другом в одну двуспиральную молекулу ДНК водородными связями между пури-новыми и пиримидиновыми основаниями разных цепочек. При этом возможны только соединения аденин—тимин и гуанин — цитозин. Нуклеотиды с соответствующими парами оснований могут чередоваться в молекуле ДНК в любом порядке.

 

 

       Рис. 6. Схема химической структуры молекулы ДНК

 

 

Именно эта последовательность чередования разных пар азотистых оснований молекулы ДНК и представляет собою запись наследственной информации[12]. При этом различные комбинации оснований в последовательных тройках (триплетах) нуклеотидов кодируют разные аминокислоты в молекулах полипептидов, синтезируемых в клетке. Отдельные гены представляют собой участки молекулы ДНК, обладающие определенной биохимической функцией (например, ответственные за синтез определенного типа белковых молекул).

Молекулы ДНК обладают способностью к редупликации, т. е. они могут удваиваться, причем новые молекулы в норме совершенно идентичны старой по строению и расположению всех нуклеотидов. На этом свойстве редупликации ДНК основана точная передача наследственных признаков от поколения к поколению.

Второе важнейшее биологическое свойство молекул ДНК — их способность контролировать синтез белков в клетке, причем, естественно, специфика молекул ДНК у данного вида организмов определяет специфику белкового синтеза у этого вида. Передача информации с ДНК в цитоплазму для последующего синтеза белков на рибосомах осуществляется через посредство РНК — более простой одноцепочной нуклеиновой кислоты, в молекуле которой место тимина занимает другое пиримидиновое основание — урацил. Процесс синтеза молекул РНК на матрице ДНК (так называемая транскрипция) происходит при участии внутриклеточного фермента транскриптазы (или ДНК-зависимой РНК-полимеразы).

Точность редупликации молекул ДНК в процессах клеточного деления (митоза) обеспечивает полную генетическую эквивалентность всех клеток многоклеточного организма. Каждая клетка содержит полный геном, т. е. минимальный полный набор наследственных факторов, включающий 100 % генетической информации. Однако в разных типах соматических клеток (например, эпителиальных, нервных, мышечных и т. п.) синтезируются совершенно определенные белки, специфичные для каждого типа клеток. Это обусловлено инактивацией (репрессией) большей части генов в хромосомах соматических клеток хромосомными белками (по одной из гипотез — белками-гистонами). Таким образом, специфичность белкового синтеза в клетках, образующих разные ткани и органы, определяется активностью различных участков хромосом.

Непосредственно кодируют последовательность аминокислот в молекулах полипептидов, синтезируемых на матрицах нуклеиновых кислот, далеко не все гены, а лишь некоторые из них, называемые структурными генами. Другие гены — регуляторы — контролируют процессы считывания наследственной информации со структурных генов, определяя синтез белков, репрессирующих те или иные структурные гены.


Оцените книгу: 1 2 3 4 5