Название: Психогенетика - Григоренко Е.Л.

Жанр: Психология

Рейтинг:

Просмотров: 869


- частоты генотипов остаются неизменными из поколения в поколение;

- при случайном скрещивании ожидаемые частоты исходных генотипов достигаются за одно поколение, если частоты аллелей у двух полов одинаковы, и за два поколения, если у двух полов в первом поколении частоты различны.

Воспроизведенные нами зависимости впервые были описаны в начале нынешнего века (1908) независимо друг от друга английским математиком Г. Харди и немецким врачом В. Вайнбергом. В их честь эта закономерность была названа законом Харди-Вайнберга (иногда используются и другие термины: равновесие Харди-Вайнберга, соотношение Харди-Вайнберга).

Этот закон описывает взаимоотношения между частотами встречаемости аллелей в исходной популяции и частотой генотипов, включающих эти аллели, в дочерней популяции. Он является одним из краеугольных принципов популяционной генетики и применяется при изучении естественных популяций. Если в естественной популяции наблюдаемые частоты встречаемости определенных генов соответствуют частотам, теоретически ожидаемым на основании закона Харди-Вайнберга, то о такой популяции говорят, что она находится в состоянии равновесия по Харди-Вайнбергу.

Закон Харди-Вайнберга дает возможность рассчитать частоты генов и генотипов в ситуациях, когда не все генотипымогут быть выделены феноти-пически в результате доминантности некоторых аллелей. В качестве примера опять обратимся к ФКУ. Предположим, что частота встречаемости гена ФКУ (т.е. частота встречаемости аллеля-мутанта) в некой популяции составляет

q =0,006. Из этого следует, что частота встречаемости нормального аллеля равна р = 1 - 0,006 = 0,994. Частоты генотипов людей, не страдающих умственной отсталостью в результате ФКУ, составляют р2 = 0,9942 = 0,988. Для генотипа аа и 2pq =2-0,994-0,006 = 0,012 для генотипа аa.

Теперь представим себе, что некий диктатор, не знающий законов популяционной генетики, но одержимый идеями евгеники, решил избавить свой народ от умственно отсталых индивидуумов. В силу того, что гетерозиготы фенотипически неотличимы от гомозигот, программа диктатора должна строиться исключительно на уничтожении или стерилизации рецессивных гомозигот. Однако, как мы уже определили, большинство аллелей-мутантов встречаются не у гомозигот {q2= 0,000036), а у гетерозигот (2pq = 0,012). Следовательно, даже тотальная стерилизация умственно отсталых приведет лишь к незначительному снижению частоты аллеля-мутанта в популяции: в дочернем поколении частота умственной отсталости будет примерно такой же, как в исходном поколении. Для того чтобы существенно снизить частоту встречаемости аллеля-мутанта, диктатору и его потомкам пришлось бы осуществлять подобного рода отбор или стерилизацию на протяжении многих поколений.

Как уже отмечалось, закон Харди-Вайнберга имеет две составляющие, из которых одна говорит о том, что происходит в популяции с частотами аллелей, а другая - с частотами генотипов, содержащих данные гены, при переходе от поколения к поколению. Напомним, что равенство Харди-Вайнберга не учитывает воздействия множества внутренних и внешних факторов, определяющих состояние популяции на каждом шагу ее эволюционного развития. Закон Харди-Вайнберга выполняется, когда в популяции: 1) отсутствует мутационный процесс; 2) отсутствует давление отбора; 3) популяция бесконечно велика; 4) популяция изолирована от других популяций и в ней имеет место панмиксия[34]. Обычно процессы, определяющие состояние популяции, разбиваются на две большие категории - те, которые влияют на генетический профиль популяции путем изменения в ней частот генов (естественный отбор, мутирование, случайный дрейф генов, миграция), и те, которые влияют на генетический профиль популяции путем изменения в ней частот встречаемости определенных генотипов (ассортативный подбор супружеских пар и инбридинг).

Что же происходит с частотами аллелей и генотипов при условии активизации процессов, выступающих в роли «природных нарушителей» покоя популяций?

 

ЭВОЛЮЦИОНИРУЮЩИЕ ПОПУЛЯЦИИ

Любое описание явлений природы - словесное, графическое или математическое - это всегда упрощение. Иногда подобное описание концентрируется преимущественно на каком-то одном, по каким-то соображениям наиболее важном, аспекте рассматриваемого явления. Так, мы считаем удобным и графически выразительным изображение атомов в форме миниатюрных планетарных систем, а ДНК - в форме витой лестницы. В популяционной генетике также существует множество подобных упрощающих моделей. Например, генетические изменения на популяционном уровне принято анализировать в рамках двух основных математических подходов - детерминистического и стохастического. Согласно детерминистической модели, изменения частот аллелей в популяциях при переходе от поколения к поколению происходят по определенной схеме и могут быть предсказаны, если: 1) размеры популяции неограниченны; 2) среда неизменна во времени или средовые изменения происходят согласно определенным законам. Существование популяций человека не вмещается в рамки данных условий, поэтому детерминистическая модель в своей крайней форме представляет абстракцию. В реальности частоты аллелей в популяциях изменяются и под действием случайных процессов.

Изучение случайных процессов требует применения другого математического подхода - стохастического. Согласно стохастической модели, изменение частот аллелей в популяциях происходит по вероятностным законам, т.е. даже если исходные условия популяции прародителей известны, частоты встречаемости аллелей в дочерней популяции однозначно предсказать нельзя. Могут быть предсказаны только вероятности появления определенных аллелей с определенной частотой.

Очевидно, что стохастические модели ближе к реальности и, с этой точки зрения, являются более адекватными. Однако математические операции намного легче производить в рамках детерминистических моделей, кроме того, в определенных ситуациях они представляют собой все-таки достаточно точное приближение к реальным процессам. Поэтому популяционная теория естественного отбора, которую мы рассмотрим далее, изложена в рамках детерминистической модели.

 

2. Факторы, влияющие на изменение частот аллелей

           в популяции


Оцените книгу: 1 2 3 4 5