Название: Основы биогеохимии - Добровольский В.В.

Жанр: Химия

Рейтинг:

Просмотров: 1599


Все рассмотренные изменения в циклическом массообмене углерода могли происходить естественным путем, без влияния хозяйственной деятельности человека. Определенные изменения в структуре глобального массообмена углерода вносит хозяйственная деятельность человечества. В результате распахивания земель, строительства городов и дорог, вырубки лесов биомасса растительности суши сократилась примерно на 25%. Соответственно изменились массы химических элементов, участвующие в биологическом круговороте, масса связываемого углерода и выделяемого кислорода. Еще больший деструктивный эффект вызывает сжигание минерального топлива, сопровождающееся изъятием значительных масс кислорода из атмосферы и образованием газообразных соединений углерода. Среди этих соединений преобладают СО и СО2. Суммарное поступление углерода из техногенных источников в атмосферу оценивается в 5×109 т/год. Поступление указанного количества в глобальный круговорот углерода не деформирует распределение масс элемента в биосфере, но может иметь последствия в связи с упомянутым ранее парниковым эффектом.

В заключение отметим, что сжигание более 90 % горючих веществ происходит в Северном полушарии, что отражается на неравномерном распределении оксида углерода. Максимальные концентрации СО2 приурочены к полосе между 40 и 50° с.ш., где расположены главные центры индустрии.

 

7.2. Влияние живого веществана

геохимию кислорода и водорода в биосфере

 

Основная масса кислорода на периферии Земли находится в кристаллическом силикатном веществе земной коры. Кислород также составляет большую часть (86 %) массы гидросферы. Но для биосферы исключительно важное значение имеет свободный молекулярный кислород, аккумулированный в атмосфере и растворенный в гидросфере. Будучи продуктом процессов жизни, кислород в то же время служит одним из основных условий существования ее главных форм и определяет самые важные реакции в биосфере.

Живое вещество состоит из углерода, кислорода, водорода. Уже поэтому распределение и динамика этих элементов в биосфере неразрывно связаны. Образование свободного кислорода связано со световой энергией Солнца и поэтому может осуществляться только на поверхности Земли либо абиогенно, путем фотолиза паров воды, либо в процессе биологического фотосинтеза.

Исходным «сырьем» для образования кислорода посредством реакций фотолиза и фотосинтеза служит вода. Связывание 1 г углерода в органическое вещество при реакции фотосинтеза сопровождается выделением примерно 2,7 г кислорода в результате расщепления молекул воды. Как упоминалось ранее, наличие органического вещества установлено в древних осадочных отложениях, имеющих возраст до 3,8 млрд лет. Следовательно, выделение кислорода при фотосинтезе продолжалось на протяжении огромного отрезка времени. Согласно данным А.Б.Ронова и А.А.Яро-шевского (1976) можно считать, что в осадочной оболочке Земли содержится около 15×1015 т Сорг (см. табл. 7.1). Этому количеству соответствует 40×1015т О2. В настоящее время в атмосфере содержится порядка (1,1—1,2)×1015 О2. Следовательно, более 38×1015 т O2 было израсходовано на процессы окисления.

Исходя из продуктивности растительного покрова Мировой суши, не нарушенного человеком, выделение кислорода можно оценить в 220×109 т/год. В настоящее время, после вырубки части лесов и уничтожения природной растительности на большой площади продуктивность растительности сократилась примерно на 25 % и выделение кислорода составляет около 165×109 т/год. Фотосинтез в океане (продукция Сорг от 40×109 до 60×109 т/год) поставляет в атмосферу от 110×109 до 160×109 Сорг, в среднем 130- 109 т/год О2. Суммарное выделение кислорода фотосинтетиками суши и океана составляет около (300 — 350)×109 т/год. Приведенные значения близки к расчетам Дж. Уолкера (1980), согласно которому основные черты глобального цикла кислорода намечаются следующими процессами: выделение кислорода растительностью Мировой суши — 150×1015 т/год, фотосинтезирующими организмами океана — 120×1015 т/год, поглощение кислорода процессами аэробного дыхания — 210×1015 т/год, биологическая нитрификация и другие процессы — 70×1015 т/год.

Количество кислорода в атмосфере равно 1,185×1015 т. При выделении кислорода (280 — 300)×109 т/год указанное количество может быть удвоено примерно за 4000 лет. Но этого не происходит, так как на протяжении года разными путями разлагается количество органического вещества, почти равное образованному при фотосинтезе, и при этом поглощается почти весь выделившийся кислород. Тем не менее благодаря сохранению части органического вещества свободный кислород постепенно накапливался в атмосфере.

Второй миграционный цикл свободного кислорода связан с массообменом в системе тропосфера — природные воды. В 1 л воды растворено от 2 до 8 см3 О2. Следовательно, в воде океана находится от 3×109 до 10×109 м3 растворенного кислорода. Холодная вода высоких широт поглощает О2; поступая с океаническими течениями в тропический пояс, она выделяет О2. Поглощение и выделение кислорода происходят также при смене теплых и холодных сезонов года. По подсчетам А.П.Виноградова (1967), в годовой массообмен между атмосферой и океаном вовлекается около 0,5 % атмосферного кислорода, т.е. 5900×109 т. Это почти в 20 раз больше биогенного продуцирования кислорода.

Водород — один из двух химических элементов, которые благодаря ничтожной массе их ядер могут диссипировать — уходить из поля тяготения Земли. Транзит водорода и гелия проходит через биосферу. Гелий как инертный газ не образует химических соединений, а водород под влиянием жизнедеятельности организмов вступает в соединения и вследствие этого задерживается в биосфере.


Оцените книгу: 1 2 3 4 5