Название: Основы биогеохимии - Добровольский В.В.

Жанр: Химия

Рейтинг:

Просмотров: 1459


Живое вещество захватывает рассеянный свинец из растворов и частично из твердой фазы и вовлекает в биологический круговорот около 210×103 т/год металла на суше. Через фотосинтезиру-ющие организмы океана проходит не менее 110×103 т/год.

Соотношение разных форм свинца в миграционных потоках регулируется глобальными механизмами: океаническим осадкообразованием, фракционированием на разделе океан — тропосфера, процессами, происходящими при формировании аэрозолей и протекающими в педосфере. В глобальной системе циклов миграции свинца весьма важная роль принадлежит педосфере. В почвах путем взаимообусловленных равновесий происходит перераспределение различных форм нахождения металла. Крупные массы растворимых форм свинца, поступающие на поверхность континентов в процессе циклической миграции, частично закрепляются на поверхности дисперсных частиц, входят в состав устойчивых гумусовых соединений. Повышенная концентрация свинца в верхнем горизонте почвы традиционно объяснялась аккумулятивной деятельностью растений. Новые факты позволяют предполагать, что это явление в определенной мере связано с циклической миграцией металла в системе поверхность суши — тропосфера.

 

9.2. Глобальный цикл цинка

 

Геохимия цинка и свинца в земной коре тесно связана. Концентрация цинка возрастает аналогично концентрации свинца от вещества верхнеймантии (3×10-3 %) к главному выплавляемому продукту — базальту (1,3×10-2 %), несколько уменьшается в гранитах (6×10-3 %). Значительные массы цинка и свинца сосредоточены в постмагматических образованиях. В месторождениях свин-цово-цинковых руд аккумулировано более 20×10б т цинка. Это количество составляет всего 0,001 % массы цинка, находящегося в рассеянном состоянии в верхней части гранитного слоя земной коры мощностью 1 км.

Биосферная геохимия цинка и свинца существенно различается. Различие обусловлено в значительной мере ролью металлов в живом веществе Мировой суши. Свинец не имеет важного физиологического значения, он захватывается наземными растениями наряду с другими рассеянными металлами. Цинк — один из главных микроэлементов, он входит в состав ферментов, обусловливающих и регулирующих многие жизненные процессы, участвует в синтезе рибонуклеиновых кислот, необходим для синтеза хлорофилла. Цинкосодержащие ферменты участвуют в углеводном и фосфатном обмене. Для организмов животных весьма важное значение имеет карбоангидриза, содержащаяся в эритроцитах. Цинк аккумулируется в гонадах животных, участвует в механизмах, обеспечивающих морозо- и засухоустойчивость растений. Цинк активно поглощается растительностью суши. Глобальный коэффициент биологического поглощения К6 цинка составляет 12, в то время как Кб свинца лишь немногим превышает единицу.

Концентрация цинка в растениях суши сильно варьирует в зависимости от почвенно-геохимических условий. Известны растения, произрастающие на участках аномально высокой концентрации металла в почве и содержащие цинк до 10 и даже 17 % от массы золы растений (так называемая галмейная флора). В то же время многочисленные данные свидетельствуют о сравнительно небольших колебаниях концентраций цинка в определенных систематических группах растений. В распространенных представителях естественной флоры США концентрация цинка, по данным X. Щаклетта, варьирует в пределах 320 — 640 мкг/г золы, в наиболее распространенных представителях травянистой растительности Южного Урала, по данным М.Д.Уфимцевой и В. Б. Черняховского, — 150 — 750 мкг/гзолы. Согласно расчетам биогеохимика из Новой Зеландии Р.Брукса (1983), средняя концентрация цинка в растениях равна 50 мкг/г сухого вещества, т. е. около 1000 мкг/г золы. Согласно нашим данным, среднюю концентрацию цинка в ежегодной продукции растительности Мировой суши можно принять равной 600 мкг/г золы, что соответствует 30 мкг/г сухой фитомассы или 12 мкг/г живой массы растений. Исходя из этой цифры, во всей биомассе растительности суши, не нарушенной человеком, содержалось около 75×106 т цинка, а захват металла годовым приростом составлял 5,2×106 т/год. Примерно такое же количество возвращалось в педосферу.

Большая часть цинка в растениях связана с легко разрушающимися тканями и быстро удаляется из растительных остатков в отличие от свинца, который прочно фиксирован в растительных остатках. Средняя концентрация цинка в торфе и лесных подстилках около 20 мкг/г сухого вещества, в гумусе почв несколько выше, около 30 мкг/г. Можно предполагать, что в органическом веществе педосферы содержится около (100— 150)×106 т цинка.

Общее содержание всех форм цинка в гумусовом горизонте почв колеблется от 20 до 80 мкг/г. Средняя концентрация цинка в гумусовом горизонте почв европейской территории России около 50 мкг/г. По данным Х.Шаклетта (1984), близкое значение имеет среднее геометрическое концентраций цинка в почвах США — 48 мкг/г. Более половины общей массы цинка в почве входит в комплексы с органическим веществом и сорбировано пленками гидроксидов железа. Отметим, что относительное содержание прочно фиксированного свинца в почвах составляет 80 — 90 %.

Водорастворимые формы цинка составляют очень небольшую часть от общей массы металла в почве, но активно вовлекаются в водную миграцию. Глобальный коэффициент водной миграции Кв цинка более 3, Кв свинца — всего 0,5. Средняя концентрация цинка в реках мира около 20 мкг/л, выносимая масса — 820×103 т/год. Средняя концентрация в речных взвесях значительно выше — 143 мкг/л (Гордеев В. В., 1983), выносимая масса — 5,8×106 т/год. Таким образом, вынос масс цинка в составе взвесей составляет 87 % от общей массы выносимого реками металла, в то время как масса свинца — более 98 %.

Цинк активно участвует в массообмене между сушей и тропосферой. Имеются сведения о том, что 1 м2 листьев деревьев может выделять до 9 кг цинка в год в составе терпенов (Бофор У. 1975). Значительное количество летучих органических соединени| цинка выделяется в условиях морских побережий и субаквалънь ландшафтов в результате бактериальной биометилизации. К сожалению, количественно оценить участие масс цинка в этих процессах пока невозможно.


Оцените книгу: 1 2 3 4 5