Название: Основы биогеохимии - Добровольский В.В.

Жанр: Химия

Рейтинг:

Просмотров: 1645


Перечисленные формы почвенного органического вещества образуются в условиях хорошей аэрации. При длительном водонасыщении почвы деятельность мезофауны и аэробных микроорганизмов подавляется и преобразование растительных остатков замедляется. В таких условиях из осадков гидрофильных растений, главным образом мхов, образуется торф. Его характерные черты: слабая разложенность растительных осадков (менее 30 %) и волокнистое строение благодаря преобладанию мхов среди растений-торфообразователей. Органическое вещество почвы, состоящее из торфяных компонентов, называется гумусом типа мор. Между рассмотренными формами почвенного органического вещества существуют постепенные переходы.

Таким образом, органическое вещество почвы состоит из слабоизмененных остатков растений, продуктов их измельчения и первоначального преобразования мезофауной и микроорганизмами, а также из специфических почвенных органических веществ. Две последние категории составляют собственно почвенный гумус.

Трансформация органического вещества в почве происходит под воздействием жизнедеятельности микроорганизмов. Разные микроорганизмы и свойственные им ферменты взаимодействуют с определенными компонентами растительных остатков. Неспороносные бактерии используют наиболее доступные компоненты: простые углеводы, аминокислоты, простые белки. Целлюлозные миксобактерии перерабатывают устойчивые углеводы. Актиномицеты завершают процесс, разлагая наиболее устойчивые компоненты растительных остатков и гумусовые вещества.

Образование гумусовых веществ протекает при участии процессов двух типов.Процессы первого типа обеспечивают частичное разложение поступивших органических соединений до более простых. Например, белки расщепляются на аминокислоты, углеводы — на простые сахара и т.д.

Процессы второго типа значительно сложнее. Это связано с тем, что гидролиз органических полимеров прерывается, если фермент встречается с неоднородностью в строении полимера.

Примером может служить случай, когда фермент, специализированный на преобразовании целлюлозы, встречается с лигнифи-цированной частью полимера. Остатки труднопреобразуемых веществ накапливаются и служат исходным материалом для специфических химических реакций конденсации. Эти реакции, отсутствующие среди биологических реакций полимеризации, приводят к образованию весьма устойчивых соединений.

В результате процессов второго типа происходит конденсация ароматических соединений фенолъного типа (продуктов распада лигнина и целлюлозы) с аминокислотами (продуктами распада микроорганизмов). В процессе окисления и конденсации образуются карбоксильные группы, которые вместе с фенолгидроксильными группами способствуют кислотному характеру гумусовых веществ.

Основными компонентами гумуса являются гуминовые и фуль-вокислоты, их соли, а также гумин — своеобразный комплекс сильно полимеризованных высокомолекулярных гумусовых кислот, связанных с высокодисперсными минеральными частицами. Между этими компонентами существуют переходы.

Гумусовые кислоты — высокомолекулярные соединения со сложной структурой. Согласно Д. С.Орлову (1974), структурная ячейка гуминовых кислот из дерново-подзолистой почвы имеет вид C173H183O86N11, из чернозема — C73H61O32N4; структурная ячейка фульвокислот из дерново-подзолистой почвы — C270H318O206N16, из чернозема — C260H280O177N15. В составе гуминовых кислот содержание углерода колеблется от 40 до 60 %, азота — от 3,5 до 6 %. Фульвокислоты содержат меньше углерода и азота: соответственно от 35 до 50 % и от 3 до 4,5 %.

Основными структурными единицами сложных молекул гуминовых кислот являются сконденсированная центральная часть (ядро) и боковые цепи, состоящие из функциональных групп:

 

 

                                   О         

   //

карбоксильной  — С. , фенолгидроксильной — ОН,

                                  \

                      ОН

                          \

карбонильной   С = О, аминогруппы —NH2. Ядро образовано из сконденсиро-

                          /

ванных ароматических и гетероциклических соединений. Реакционная способность гуминовых кислот связана с карбоксильными и фенолгидроксильными группами, водород которых может замещаться другими катионами. Часть водорода функциональных групп замещается комплексными катионами типа Fe(OH)2 и т. п. В результате образуются сложные внутрикомплексные соединения — хелаты железа, алюминия и других металлов. Гуминовые кислоты не растворяются в воде, но хорошо растворимы в щелочных растворах.

Фульвокислоты имеют похожее строение, но в них боковые цепи преобладают над ядром. Содержание карбоксильных и фенолгид-роксильных групп больше, чем у гуминовых кислот. Фульвокислоты растворяются в воде, растворы имеют сильнокислую реакцию (рН 2,6 — 2,8). Растворяющая способность фульвокислот усиливается их склонностью к хелатированию. Комплексные соединения фульватов могут активно мигрировать в природных водах в таких физико-химических условиях, где свободные катионы металлов выпадают в осадок.


Оцените книгу: 1 2 3 4 5