Название: Общая теория статистики - Елисеева И.И.

Жанр: Статистика

Рейтинг:

Просмотров: 1498


 

где D - определитель системы;

Da - частный определитель, получаемый в результате замены коэффициентов при а свободными членами из правой части системы уравнений;

Db - частный определитель, получаемый в результате замены коэффициентов при b свободными членами из правой части системы уравнений.

 

Формулы (8.10) соответствуют самому общему подходу к определению параметров уравнения регрессии и могут применяться в случае как парной, так и множественной регрессии.

Применение одной из формул (8.7), (8.8) или (8.9) зависит от характера данных и наличия уже вычисленных на предыдущих этапах анализа показателей. Если были вычислены x̅, y̅, sx, sy, то проще применить формулу (8.7) или (8.8). Если расчет параметров уравнения корреляционной связи ведется исходя из первичных данных хi, уi, то удобнее формула (8.9). Особенно существенно она сокращает объем вычислений при слабой вариации признаков, ибо тогда отклонения их индивидуальных значений от средних величин на порядок или два меньше самих индивидуальных и средних величин. Кроме того, формула (8.9) явно выражает указанную в п. 8.1 особенность корреляционного анализасвязей: параметры корреляции зависят не от уровней признаков, а только от их отклонений от средних значений.

Если значение признака увеличить в 10 раз, корреляция не изменится, также не изменятся параметры корреляции, кроме свободного члена, если ко всем значениям каждого признака прибавить постоянное число.

Коэффициент парной линейной регрессии, обозначенный Ь, имеет смысл показателя силы связи между вариацией факторного признака х и вариацией результативного признака у. Он измеряет среднее по совокупности отклонение у от его средней величины при отклонении признака х от своей средней величины на принятую единицу измерения.

Например, по данным табл. 8.1 при отклонении затрат на 1 корову от средней величины на 1 руб. надой молока на корову отклоняется от своего среднего значения на 3,47 кг в среднем по совокупности. При отклонении фактора на х̅i - х̅ результативный признак отклоняется в среднем на у̅i - у̅.

Теснота парной линейной корреляционной связи, как и любой другой показатель, может быть измерена корреляционным отношением h. Кроме того, при линейной форме уравнения применяется другой показатель тесноты связи - коэффициент корреляции rxy. Этот показатель представляет собой стандартизованный коэффициент регрессии, т. е. коэффициент, выраженный не в абсолютных единицах измерения признаков, а в долях среднего квадратического отклонения результативного признака:

 

.   (8.11

 

Коэффициент корреляции был предложен английским статистиком и философом Карлом Пирсоном (1857 - 1936). Его интерпретация такова: отклонение признака-фактора от его среднего значения на величину своего среднего квадратического отклонения в среднем по совокупности приводит к отклонению признака-результата от своего среднего значения на rxy его среднего квадратического отклонения.

В отличие от коэффициента регрессии b коэффициент корреляции не зависит от принятых единиц измерения признаков, а стало быть, он сравним для любых признаков.

Обычно считают связь сильной, если r ³. 0,7; средней тесноты, при 0,5 £ r £ 0,7; слабой при г < 0,5. Не следует, особенно работая с ЭВМ, гнаться за большим числом знаков коэффициента корреляции. Во-первых, исходная информация редко имеет более трех значащих точных цифр, во-вторых, оценка тесноты связи не требует более двух значащих цифр.

Квадрат коэффициента корреляции называется коэффициентом детерминации:

 

Эта формула понадобится при. анализе множественной корреляции. Умножив числитель и знаменатель (8.12) на   получим:

Это выражение соответствует выражению г\2 (см. формулу (8.2)). Тождество коэффициента детерминации и квадрата корреляционного отношения служит основанием для интерпретации величины г2 как доли общей дисперсии результативного признака у, которая объясняется вариацией признака-фактора х (и связью между вариацией обоих признаков). Собственно говоря, основным показателем тесноты связи и следовало бы считать коэффициент детерминации  (для линейной формулы связи) или квадрат корреляционного отношения. Но исторически раньше был введен коэффициент корреляции, который долгое время и рассматривался как основной показатель.

Аналогично разным «рабочим» формулам для вычисления коэффициента регрессии можно на основе исходной формулы (8.10) подучить разные «рабочие» формулы коэффициента корреляции.

1.     Разделив числитель и знаменатель формулы (8.11) на п, получим:

2.      

.                         (8.14)

 

Эта формула соответствует формуле (8.8) для коэффициента регрессии.

2. Средние квадратические отклонения можно выразить через средние величины признака:

                   .    

 

Подставив эти выражения в (8.14), получим:


Оцените книгу: 1 2 3 4 5