Название: Общая теория статистики - Елисеева И.И.

Жанр: Статистика

Рейтинг:

Просмотров: 1497


 

Итак, мы получили, что β-коэффициент фактора хj относится к коэффициенту эластичности этого фактора, как коэффициент вариации фактора к коэффициенту вариации результативного признака. Поскольку, как видно по последней строке табл. 8.7, коэффициенты вариации всех факторов меньше коэффициента вариации результативного признака; все β-коэффициенты меньше коэффициентов эластичности.

Рассмотрим соотношение между парным и условно-чистым коэффициентом регрессии на примере фактора -с,. Парное линейное уравнение связи у с х, имеет вид:

                             ŷ = 3,886x1 – 243,2

 

Условно-чистый коэффициент регрессии при x1, составляет только 58% парного. Остальные 42% связаны с тем, что вариации x1 сопутствует вариация факторов x2 x3, которая, в свою очередь, влияет на результативный признака. Связи всех признаков и их коэффициенты парных регрессий представлены на графе связей (рис. 8.2).

 

    

 

Если сложить оценки прямого и опосредованного влияния вариации х1 на у, т. е. произведения коэффициентов парных регрессий по всем «путям» (рис.8.2), получим: 2,26 + 12,55·0,166 + (-0,00128)·(-4,31) + (-0,00128)·17,00·0,166 = 4,344.

Эта величина даже больше парного коэффициента связи x1 с у. Следовательно, косвенное влияние вариации x1 через не входящие в уравнение признаки-факторы - обратное, дающее в сумме:

3,886 - 4,344 = - 0,458.

 

8.12. Меры тесноты связей в многофакторной

          системе

 

Многофакторная система требует уже не одного, а множества показателей тесноты связей, имеющих разный смысл и применение. Основой измерения связей является матрица парных коэффициентов корреляции (табл. 8.10).

Таблица 8.10

Матрица парных коэффициентов корреляции

 

 

По этой матрице можно судить о тесноте связи факторов с результативным признаком и между собой. Хотя все эти показатели относятся к парным связям, все же матрицу можно использовать для предварительного отбора факторов для включения в уравнение регрессии. Не рекомендуется включать в уравнение факторы слабо связанные с результативными признаками, но тесно связанные с другими факторами. Если, например, имеем: rxy1 = 0,8; rxy2 = 0,65;

rx1x2 = 0,88, то в регрессионное уравнение следует включить фактор x1, а фактор х2 не включать, так как он тесно связан с х1 (коллинеарен с x1), и его корреляция с у слабее, чем корреляция фактора x1. Совершенно недопустимо включать в анализ факторы, функционально связанные друг с другом, т. е. с коэффициентом корреляции, равным единице. Включение таких пар признаков приводит к вырожденной матрице коэффициентов и неопределенности решения. В этом случае решение задачи на ПЭВМ прекращается.

Матрица парных коэффициентов для нашего примера (табл. 8.11) говорит об отсутствии коллинеарных (т. е. линейно связанных) факторов, что позволяет включить все эти факторы в уравнении регрессии.

На основе этой матрицы вычисляется наиболее общий показатель тесноты связи всех входящих в уравнение регрессии факторов

Таблица 8.11

 Матрица парных коэффициентов корреляции

            

Этим способом можно определить величину R2 не вычисляя расчетных значений результативного признака у̂i для всех единиц совокупности. Если полученная величина R2 не удовлетворяет исследоветеля, то можно прекратить дальнейшие вычисления и не рассчитывать у̂i (это имеет значение, если совокупность состоит из сотен и тысяч единиц).

Принципиальное содержание множественного коэффициента детерминации, как и парного, раскрывается формулой (8.2). Jmo отношение части вариации результативного признака, объясняемой за счет вариации входящих в уравнение факторов, к общей вариации результативного признака за счет всех факторов, здесь под «вариацией» понимается сумма квадратов отклонении индивидуальных расчетных по уравнению величин от средней («объясненная вариация») и первичных индивидуальных величин от средней («общая вариация»).

В нашем примере значение сумм квадратов отклонений и коэффициенты детерминации и корреляции приведены по распечатке программы «Microstat» в табл. 8.12.

Таблица 8.12

         Показатели множественной корреляционной связи

 

 

Верхняя строка: корректированный R-квадрат = 0,872390; вторая строка: R-квадрат = 0,897912; третья строка: множественный R = 0,947582. Затем приводится таблица дисперсионного анализа, в которой указываются источники вариации: объясненная сумма квадратов отклонений значений, рассчитанных по уравнению регрессии, от среднего значения Dост = S(ŷi - y̅)2 = 662 772,98 при числе степеней свободы, равном числу объясняющих переменных dfk = 3; остаточная - отклонения фактических значений от расчетных Dост = S(ŷi - y̅)2  = 75353,96 при числе степеней свободы, равном df=n-k-1, df=12; общая - S(ŷi - y̅)2  =738 126,94, при числе степеней свободы df = п –k - 1, df = 15. Затем приводится средний квадрат отклонений: s21 = Dобъясн : dfобъясн = 662772,98 : 3 = 220924,3;


Оцените книгу: 1 2 3 4 5