Название: Нейрофизиология и высшая нервная деятельность детей и подростков - Смирнов В. М.

Жанр: Медицина

Рейтинг:

Просмотров: 5153


1.5. СИСТЕМНЫЙ ПРИНЦИП РЕГУЛЯЦИИ

1.5.1. Структура функциональных систем и мультипараметрический принцип их взаимодействия

 

Поддержание констант внутренней среды организма осуществляется с помощью регуляции деятельности различных органов и физиологических систем, объединенных в одну функциональную систему. Представление о функциональных системах разработал П.К.Анохин (1898-1974). В последние годы теория функциональных систем успешно развивается К. В. Судаковым.

А. Структура функциональной системы. Функциональная система - динамическая, избирательно объединенная центрально-периферическая организация, деятельность которой направлена на достижение полезного для организма приспособительного результата. Она включает следующие элементы:

• управляющее устройство - нервный центр, представляющий объединение ядер различных уровней ЦНС;

• выходные каналы нервного центра (нервы и гормоны);

• исполнительные органы - эффекторы, обеспечивающие в ходе физиологической деятельности поддержание регулируемого процесса (константы) на некотором оптимальном уровне (полезный результат деятельности функциональной системы);

• рецепторы результата (сенсорные рецепторы) - датчики, воспринимающие информацию о параметрах отклонения регулируемого процесса (константы) от оптимального уровня;

• каналы обратной связи - входные каналы, информирующие нервный центр с помощью импульсаций от рецепторов результата или на основе изменений химического составатех или иных жидкостей организма о достаточности либо недостаточности эффекторных усилий по поддержанию регулируемого процесса (константы) на оптимальном уровне (схема 1.2). Афферентные импульсы от рецепторов результата по каналам обратной связи поступают в нервный центр, регулирующий ту или иную константу. Например, при увеличении артериального давления в большей степени начинают раздражаться барорецепторы рефлексогенных сосудистых зон, в результате чего увеличивается поток импульсов в ЦНС - в центр кровообращения. Взаимодействие нейронов этого центра и изменение интенсивности эфферентной импульсации ведут к ослаблению деятельности сердца и расширению кровеносных сосудов. Артериальное давление крови снижается. Возможны флюктуации величины артериального давления, но после ряда колебаний оно возвращается к нормальной величине. Если описанного механизма оказалось недостаточно и давление остается повышенным, включаются дополнительные регуляторные механизмы, в частности возрастает переход жидкости из кровеносного русла в межклеточное пространство (интерстиций), включается эндокринная система, больше воды выводится из организма почками. Совокупность перечисленных процессов ведет к нормализации артериального давления. При снижении артериального давления эти механизмы работают в противоположном направлении. Подобным образом работают и другие гомеостатирующие функциональные системы.

Схема 1.2. Функциональная система регуляции констант организма (по П.К.Анохину, с изменениями)

При изменении интенсивности работы эффектора меняется интенсивность метаболизма, что также играет важную роль в регуляции деятельности органов той или иной функциональной системы. Например, при усилении сокращений мышцы увеличивается интенсивность обмена веществ, в кровь выделяется значительно больше метаболитов. Последние действуют, во-первых, непосредственно на орган-эффектор (в данном случае это приводит к расширению кровеносных сосудов и улучшению кровоснабжения органа, что весьма важно). Во-вторых, метаболиты, попадая в кровь, а с кровью в ЦНС, действуют также и на соответствующие центры, изменение активности которых вносит необходимые корригирующие влияния на органы и ткани организма. В-третьих, метаболиты воздействуют также на рецепторы рабочего органа (или органов) - рецепторы результата, что тоже отражается на активности рецепторов и, естественно, на импульсации в афферентных путях, проводящих импульсы в ЦНС по принципу обратной связи.

Архитектура различных функциональных систем принципиально одинакова, что называют изоморфизмом. Вместе с тем функциональные системы могут отличаться друг от друга по степени разветвленности как центральных, так и периферических механизмов. Необходимо подчеркнуть, что системообразующим фактором, выступающим в качестве инструмента включения тех или иных органов, тканей, механизмов в функциональную систему, является полезный для жизнедеятельности организма приспособительный результат - конечный продукт физиологической активности функциональной системы.

Ряд гомеостатических функциональных систем представлен исключительно внутренними, генетически детерминированными механизмами вегетативной нервно-гормональной регуляции и не включает механизмы поведенческой соматической регуляции. Примером являются функциональные системы, определяющие оптимальные для обмена веществ организма кровяное давление, содержание ионов в крови, не изменяющих осмолярность и не вызывающих чувство жажды, рН внутренней среды организма. Другие гомеостатические функциональные системы включают целенаправленное поведение во внешней среде на базе доминирующих мотивационных возбуждений, отражающих сдвиги различных показателей метаболизма. В этом случае системообразующим фактором является также и мотивация. Примерами таких функциональных систем могут служить системы, обеспечивающие поддержание оптимального уровня питательных веществ, осмотического давления и объема жидкости в организме, температуры внутренней среды организма. В подобном случае опорно-двигательный аппарат выступает как составная часть эффектора - рабочего органа. При этом реагируют многие внутренние органы, обеспечивающие усиление сократительной деятельности скелетной мускулатуры, - это тоже составная часть эффектора. В частности, усиливается деятельность сердца, стимулируется дыхание.

Б. Мультипараметрический принцип взаимодействия различных функциональных систем. Это принцип, определяющий обобщенную деятельность функциональных систем. Относительная стабильность показателей внутренней среды организма является результатом согласованной деятельности многих функциональных систем. Выяснилось, что различные константы внутренней среды организма оказываются взаимосвязанными. Это проявляется в том, что изменение величины одной константы может привести к изменению параметров других констант. Например, избыточное поступление воды в организм сопровождается увеличением объема циркулирующей крови, повышением артериального давления, снижением осмотического давления плазмы крови. В функциональной системе, поддерживающей оптимальный уровень газового состава крови, одновременно осуществляется взаимодействие рН, и. Изменение одного из этих параметров немедленно приводит к изменению количественных характеристик других параметров.


Оцените книгу: 1 2 3 4 5