Название: Нейрофизиология и высшая нервная деятельность детей и подростков - Смирнов В. М.

Жанр: Медицина

Рейтинг:

Просмотров: 5153


•наличие специфических переносчиков для отдельных или нескольких веществ, близких по строению. Вещества, имеющие сходные по строению молекулы, могут переноситься одним и тем же переносчиком и конкурировать за переносчика;

•у молекулы-переносчика может быть особый канал, пропускающий вещество только одного определенного типа;

•с увеличением концентрации вещества с одной стороны мембраны скорость облегченной диффузии возрастает только до определенного предела в отличие от простой диффузии. Прекращение нарастания облегченной диффузии при увеличении концентрации вещества свидетельствует о том, что все переносчики уже заняты, - явление насыщения. Выделяют специфическое стимулирование и ингибирование облегченной диффузии: например, флоридзин, введенный в просвет кишечника, специфически подавляет транспорт Сахаров, не затрагивая переноса аминокислот; инсулин активирует перенос глюкозы в клетки организма. Переносчиками являются белковые молекулы, которые совершают челночные движения через мембрану либо встраиваются в нее. В последнем случае образуется канал, по которому проходят транспортируемые вещества, в основном сахара, аминокислоты.

В случае предполагаемых челночных движений белковых молекул-переносчиков возникает вопрос: какая сила обеспечивает транспорт самих переносчиков? Если это одностороннее движение, то оно быстро прекратится после уравнивания концентрации самих переносчиков пообе стороны клеточной мембраны. На этот вопрос ответа пока нет. Мы полагаем, что возможны два механизма. Во-первых, за счет создания градиента концентрации самого переносчика, с помощью концентрационного градиента транспортируемого вещества. Если, например, концентрация глюкозы или аминокислоты больше вне клетки, чем в клетке, то она может переходить в клетку согласно своему градиенту концентрации. Образование комплекса молекул глюкоза - переносчик лишь улучшает прохождение глюкозы через мембрану согласно концентрационному градиенту глюкозы. Движущей силой является концентрационный градиент глюкозы. На внутренней стороне клеточной мембраны комплекс распадается, поэтому концентрация молекул-переносчиков возрастает и они, согласно своему концентрационному градиенту, переходят на наружную сторону клеточной мембраны, снова соединяются с глюкозой и ускоряют ее переход в клетку. Во-вторых, челночные движения переносчика могут осуществляться с помощью ионов К+. Известно, что К+ постоянно диффундирует из клетки согласно концентрационному градиенту. При этом в клетке может образоваться комплекс ион К+ - молекула переносчика, который и перейдет с внутренней стороны клеточной мембраны на наружную сторону. В этом случае движущей силой является концентрационный градиент иона К+, который затем переносится в клетку Na/K-помпой с непосредственной затратой энергии, т.е. первично активно. Напомним, что энергия здесь затрачивается только на транспорт иона Na-1' - экономичность транспорта веществ. Переносчик транспортируется вторично активно, если не будет работать Na/K-помпа, челночные движения переносчика согласно такому представлению прекратятся.

3. Осмос - это частный случай диффузии: движение воды (растворителя) через полупроницаемую мембрану в область с большей концентрацией частиц, т.е. с большим осмотическим давлением. Осмотическое давление - это диффузионное давление, обеспечивающее движение растворителя через полупроницаемую мембрану. Измеряется минимальной величиной механического давления на раствор (например, с помощью поршня), препятствующего движению растворителя через полупроницаемую мембрану. Осмотическое давление одномолярного раствора чрезвычайно велико - 22,4 атм, в плазме крови оно существенно ниже - 7,6 атм, несколько больше внутри клетки, что и обеспечивает ее упругость вследствие поступления воды в клетку и растяжения ее мембраны. Осмос продолжается до выравнивания осмотического давления по обе стороны полупроницаемой мембраны или выравнивания осмотического давления и гидростатического противодавления. Поэтому при подавлении метаболизма клетки быстро набухают, так как внутри клетки осмотическое давление сохраняется повышенным: внутрь клеток поступает вода и они становятся более упругими. Вода поступает в клетку через водные каналы и временные поры, образующиеся между молекулами липидов и при смещении белков. Через водные каналы могут проходить также малые незаряженные молекулы: кислород, углекислый газ, этанол, мочевина.

Б. Натрийзависимый транспорт. В этом случае энергия затрачивается на создание градиента натрия. Различают два варианта данного механизма транспорта.

Первый вариант: направление движения транспортируемого вещества совпадает с направлением движения натрия согласно его электрохимическому градиенту (симпорт). Глюкоза связывается с белком-переносчиком мембраны, последний соединяется с ионом Na+, a Na+, согласно концентрационному и электрическому градиентам, диффундирует в клетку и несет с собой глюкозу. На внутренней стороне клеточной мембраны комплекс распадается, ион Na+ выводится помпой с непосредственной затратой энергии из клетки в интерстиций вопреки электрохимическому градиенту - первично активно. С помощью натриевого механизма обеспечивается обратный захват (реабсорбция) медиатора в пресинаптическую терминаль из синаптической щели в синапсах ЦНС. Транспорт веществ с помощью иона Na+ осуществляется согласно законам диффузии для ионов Na+. Транспортируемое вещество при этом может поступать в клетку вопреки собственному концентрационному градиенту. Движущей силой является электрохимический градиент ионов Na4'. Глюкоза вместе с ионом Na+ попадает в клетку даже в том случае, если ее концентрация в клетке больше, чем в среде, если, конечно, электрохимический градиент Na+ превосходит концентрационный градиент глюкозы.

Второй вариант: перемещение транспортируемых частиц направлено в противоположную движению ионов Na+ сторону - это антипорт (противотранспорт). С помощью этого обменного механизма регулируется, например, содержание ионов Са2+ в клетке, рН внутри клетки за счет выведения иона Н+ в обмен на внеклеточный ион Na+. Внутриклеточная концентрация иона Ca2+ на несколько порядков ниже внеклеточной. Натриевый концентрационный градиент участвует в выведении иона Са2+ из клетки. Об этом свидетельствует, в частности, следующий факт. Выведение иона Ca2+ из клетки снижается, если удалить из внеклеточной среды ион Na+. Это позволяет предположить, что ион Са2+ выводится из клетки в обмен на поступающий в нее ион Na+ и противоположно направленные потоки этих ионов сопряжены друг с другом; обеспечивается данный транспорт переносчиком-обменником. Исходным источником энергии этого процесса опять является градиент Na+, который в конечном счете формируется за счет АТФ-зависимого активного транспорта ионов Na+. Поэтому во всех случаях, когда ток ионов Na+ в клетку уменьшается, снижается и выведение ионов Са2+ из клетки. Это наблюдается в следующих случаях: при ингибировании Na/K-АТФазы, уменьшении внеклеточной концентрации ионов Na+- и в бескалиевой среде (когда Na+ выводится недостаточно из клетки). При этом Na/Ca-обменник блокируется, в результате чего увеличивается внутриклеточная концентрация ионов Ca2+.


Оцените книгу: 1 2 3 4 5