Название: Нейрофизиология и высшая нервная деятельность детей и подростков - Смирнов В. М.

Жанр: Медицина

Рейтинг:

Просмотров: 5169


2. Замедленное проведение сигнала, объясняется синаптической задержкой (интервал между приходом импульса к пресинаптической мембране и возникновением ВПСП в нейроне составляет 0,2-0,5 мс). Необходимо время для выделения медиатора из пресинаптического окончания, диффузии его к постсинаптической мембране, возникновения ВПСП.

3. Низкая лабильность синапсов, равная 100-150 передаваемым импульсам в секунду, что в 5-6 раз ниже лабильности аксона. Главной причиной низкой лабильности синапса является сравнительно большая совокупная длительность процессов, обеспечивающих проведение возбуждения от пресинаптической мембраны к нейрону.

4. Проводимость химических синапсов сильно изменяется под влиянием биологически активных веществ, лекарственных средств и ядов. Она легко блокируется и стимулируется.

4.3.4. Электрические синапсы ЦНС

 

Электрические синапсы имеют щель, которая на порядок меньше, чем щель у химических синапсов. Они проводят сигнал в обе стороны без синаптической задержки. Передача сигнала не блокируется при удалении ионов Са2+. Кроме того, электрические синапсы малочувствительны к фармакологическим препаратам и ядам, практически неутомляемы, как и нервное волокно. Контактирующие мембраны нейронов связаны друг с другом полуканалами белковой природы - коннексонами (от англ. connection - связь).Через коннексоны клетки обмениваются некоторыми компонентами цитоплазмы: аминокислотами, пептидами, РНК, метаболитами, циклическими нуклеотидами. Очень низкое удельное сопротивление сближенных пре- и постсинаптических мембран обеспечивает хорошую электрическую проводимость. Определенную роль в обеспечении такой электрической проводимости играют коннексоны.

Механизм передачи возбуждения в электрическом синапсе подобен таковому в нервном волокне: ПД, возникающий на пресинаптической мембране, непосредственно раздражает постсинаптическую мембрану. Работа электрических синапсов может регулироваться близлежащими химическими синапсами. Например, между шипиками клеток ядра нижней оливы продолговатого мозга передача возбуждения блокируется, если выделяется медиатор в рядом расположенном химическом синапсе. Электрические синапсы, как выяснилось, оказывают действие на метаболизм контактирующих клеток.

4.4. МЕДИАТОРЫ И РЕЦЕПТОРЫ ЦНС

 

Медиаторами ЦНС являются многие химические вещества, разнородные в структурном отношении (в головном мозге обнаружено около 30 биологически активных веществ). По химическому строению их можно разделить на несколько групп, главными из которых являются моноамины, аминокислоты и полипептиды. Достаточно широко распространенным медиатором является ацетилхолин.

А. Ацетилхолин. Встречается в различных отделах ЦНС, известен в основном как возбуждающий медиатор: в частности, является медиатором α-мотонейронов спинного мозга, иннервирующих скелетную мускулатуру. С помощью ацетилхолина α-мотонейроны по коллатералям своих аксонов передают возбуждение на тормозные клетки Реншоу. В ретикулярной формации ствола мозга, в гипоталамусе обнаружены М- и N-холинорецепторы. При взаимодействии ацетилхолина с рецепторным белком последний изменяет свою конформацию, в результате чего открывается ионный канал. Тормозное влияние ацетилхолин оказывает с помощью М-холинорецепторов в глубоких слоях коры большого мозга, в стволе мозга, хвостатом ядре.

Б. Моноамины. Выделяют катехоламины, серотонин и гистамин. Большинство из них в значительных количествах содержится в нейронах ствола мозга, в меньших количествах они обнаруживаются в других отделах ЦНС.

Катехоламины обеспечивают возникновение процессов возбуждения и торможения, например, в промежуточном мозге, черной субстанции, лимбической системе, полосатом теле.

С помощью серотонина в нейронах ствола мозга передаются возбуждающие и тормозящие влияния, в коре мозга - тормозящие влияния. Серотонин содержится главным образом в структурах, имеющих отношение к регуляции вегетативных функций. Особенно много его в лимбической системе, ядрах шва. В нейронах названных структур выявлены ферменты, участвующие в синтезе серотонина. Аксоны этих нейронов проходят в бульбоспинальных путях и оканчиваются на нейронах различных сегментов спинного мозга. Здесь они контактируют с клетками преганглионарных симпатических нейронов и со вставочными нейронами желатинозной субстанции. Полагают, что часть этих так называемых симпатических нейронов, а может быть и все, являются серотонинергическими нейронами вегетативной нервной системы. Их аксоны, согласно данным некоторых авторов, идут к органам пищеварительного тракта и стимулируют их сокращение.

Гистамин в довольно высокой концентрации обнаружен в гипофизе и срединном возвышении гипоталамуса. В остальных отделах ЦНС уровень гистамина очень низкий. Медиаторная роль его изучена мало. Выделяют H1- и Н2-гистаминорецепторы. H1-рецепторы имеются в гипоталамусе и участвуют в регуляции потребления пищи, терморегуляции, секреции пролактина и антидиуретического гормона. Н2-рецепторы обнаружены на глиальных клетках.

В. Аминокислоты. Кислые аминокислоты (глицин, γ-аминомасляная кислота) являются тормозными медиаторами в синапсах ЦНС и действуют на тормозные рецепторы (см. раздел 4.8). Нейтральные аминокислоты (α-глутамат, α-аспартат) передают возбуждающие влияния и действуют на соответствующие возбуждающие рецепторы. Предполагают, что глутамат может быть медиатором афферентов в спинном мозге. Рецепторы глутаминовой и аспарагиновой аминокислот имеются на клетках спинного мозга, мозжечка, таламуса, гиппокампа, коры большого мозга. Полагают, что глутамат - самый распространенный медиатор ЦНС.

Г. Полипептиды. В синапсах ЦНС они также выполняют медиаторную функцию. В частности, субстанция Р является медиатором нейронов, передающих сигналы боли. Особенно много этого полипептида в дорсальных корешках спинного мозга. Это послужило основанием к предположению, что субстанция Р может быть медиатором чувствительных нервных клеток в области их переключения на вставочные нейроны. Субстанция Р в больших количествах содержится в гипоталамической области. Различают два вида рецепторов субстанции Р: рецепторы типа SP-P, расположенные на нейронах мозговой перегородки, и рецепторы типа SP-E, расположенные на нейронах коры большого мозга.

Энкефалины и эндорфины - медиаторы нейронов, блокирующих болевую импульсацию. Они реализуют свое влияние посредством соответствующих опиатных рецепторов, которые особенно плотно располагаются на клетках лимбической системы; много их также на клетках черной субстанции, ядрах промежуточного мозга и солитарного тракта, имеются они на клетках голубого пятна, спинного мозга. Их лигандами являются β-эндорфин, динорфин, лей- и мет-энкефалины.


Оцените книгу: 1 2 3 4 5