Название: Метрология - Сергеев А.Г.

Жанр: Маркетинг

Рейтинг:

Просмотров: 2176


При восстановлении непрерывный сигнал на каждом из участков между соседними дискретными значениями заменяется кривой, вид которой определяется выбранными базисными функциями. Восстановление непрерывного сигнала из дискретизированного должно проводиться с возможно меньшей заданной погрешностью. Для этого необходимо соответствующим образом выбрать для данного участка сигнала восстанавливающую базисную функцию.

Коэффициенты ряда и базисные функции могут выбираться на основе различных критериев [14, 88], например: наибольшего отклонения [14], минимума погрешности или совпадения значений восстанавливаемого непрерывного сигнала с мгновенными значениями дискретизированного сигнала. В "измерительной технике наиболее широко используется последний критерий, так как он удобен для аналитического восстановления с помощью компьютера на основе результатов измерения мгновенных значений дискретизированного сигнала, отличается простотой реализации и достаточно высокой точностью.

Восстановление сигнала в данном случае регулируется теоремой Котелъникова, которая формулируется следующим образом: если функция Y(t), удовлетворяющая условиям Дирихле — ограничена, кусочно-непрерывна, имеет конечное число экстремумов — и обладающая спектром с граничной частотой fc, дискретизирована циклически с периодом Dt, меньшим или равным l/(2fc), т.е. fд > 2fc, то она может быть восстановлена по всей этой совокупности еемгновенных значений без погрешности.

Если теорема Котельникова выполняется, то непрерывный сигнал Y(t) может быть восстановлен как сумма базисных функций, называемых рядом Котельникова:

где wc=2pfc — круговая граничная частота спектра непрерывного сигнала Y(t); Dt — период дискретизации; Fот(t) — функция отсчетов.

Ряд Котельникова является одним из примеров обобщенного ряда Фурье и замечателен тем, что его коэффициенты равны мгновенным дискретизированным значениям сигнала Y(t) и, следовательно, определяются наиболее простым способом.

При использовании теоремы Котельникова возникает ряд принципиальных затруднений [13]. Теорема предназначена для сигналов с ограниченным частотным спектром, а реальные сигналы имеют бесконечный частотный спектр. Искусственное ограничение реального бесконечного спектра частотой fc (впредположении, что при частотах, больших fc, спектр равен нулю) приводит к возникновению погрешности восстановления.

В действительности дискретизированные значения сигнала практически никогда не являются мгновенными. Чаще всего они выражают усредненное за некоторый конечный (хотя и весьма малый) интервал значение сигнала (см. рис. 10.15,6). Это обуславливает возникновение методической погрешности восстановления сигнала.

Кроме полиномов Котельникова широкое применение в качестве базисных функций нашли степенные алгебраические полиномы Лагранжа (см. рис.10.14,6) и Уолша [14].

Погрешность восстановления дискретизированных сигналов равна разности между значениями непрерывной исходной функции и восстанавливающей функции. Она существенным образом зависит от вида используемой базисной функции. Для восстанавливающей функции на основе полиномов Лагранжа нулевой степени погрешность восстановления показана на рис. 10.14, б.

Погрешность восстановления зависит от закона изменения дис-кретизируемой функции, выбранных восстанавливающих полиномов и величины шага или частоты дискретизации. Чем менее гладкой и монотонной является дискретизируемая функция (т.е. чем больше в ее спектральном составе высших гармоник), тем больше, при прочих равных, погрешность восстановления. Выбор восстанавливающих полиномов влияет не только на погрешность, но и на сложность и стоимость реализующей данный способ восстановления аппаратуры. Поэтому на практике стремятся использовать по возможности наиболее простые аппроксимирующие выражения.

Погрешность восстановления доводят до требуемой величины главным образом соответствующим выбором шага дискретизации. Очевидно, что при его уменьшении погрешность восстановления снижается. Однако при малых Dt измерительный прибор должен иметь очень высокое быстродействие, что требует усложнения его конструкции и приводит к увеличению стоимости. Кроме этого возникает избыточность информации, приводящая к перегрузке используемых каналов связи и запоминающих устройств. При больших Dt невозможно точно восстановить исходную непрерывную функцию, поэтому на практике шаг Dt и частоту дискретизации f=l/Dt рассчитывают по заданной погрешности восстановления.

Методика расчета зависит от применяемых базисных функций. При использовании ряда Котельникова частота дискретизации рассчитывается по формуле f=2kfc, где k — коэффициент запаса, выбираемый [14] из диапазона (1,5; 6) и учитывающий неограниченность спектра реальных сигналов; fc — максимальная частота в спектре сигнала.

Формулы для расчета частоты дискретизации при использовании полиномов Лагранжа нулевой и первой степеней носят приближенный характер и подробно рассмотрены в [13].

Сигналы, дискретизированные по времени и квантованные по размеру (рис. 10.16), согласно приведенной классификации являются цифровым сигналами. На практике они формируются цифроаналоговыми преобразователями. Последние фактически являются управляемыми цифровым кодом мерами, выходной сигнал которых подвергнут дискретизации. Следовательно, в этих устройствах параллельно осуществляются два процесса преобразования измерительной информации: дискретизация и квантование. Их совместное действие описывается математическим выражением


Оцените книгу: 1 2 3 4 5