Название: Метрология - Сергеев А.Г.

Жанр: Маркетинг

Рейтинг:

Просмотров: 2172


Рис. 11.11. Обозначение меры в структурных схемах (а) и

                   функция преобразования многозначной меры (б)

 

Меры подразделяют на следующие типы:

однозначные, воспроизводящие физическую величину одного размера, например: гиря 1 кг, плоскопараллельная концевая мера 100 мм, конденсатор постоянной емкости, нормальный элемент;

многозначные, воспроизводящие ФВ разных размеров, например: конденсатор переменной емкости, штриховая мера длины.

Кроме этого, различают наборы мер, магазины мер, установочные, встроенные и ввозимые меры.

Степень совершенства меры определяется постоянством размера каждой ступени квантования [Q] и степенью многозначности, т.е. числом N воспроизводимых известных значений ее выходной величины. С наиболее высокой точностью посредством мер воспроизводятся основные физические величины: длина, масса, частота, напряжение и ток.

Устройство сравнения (компаратор) — это средство измерений, дающее возможность сравнивать друг с другом меры однородных величин или же показания измерительных приборов. Примерами могут служить: рычажные весы, на одну чашку которых устанавливается образцовая гиря, а на другую — поверяемая; гра-дуировочная жидкость для сличения показаний образцового ирабочего ареометров; тепловое поле, создаваемое термостатом для сравнения показаний термометров. Во многих относительно простых СИ роль компаратора выполняют органы чувств человека, главным образом зрение, например при сравнении отклонения указателя прибора и числа делений, нанесенных на его шкале.

Особенно широкое распространение компараторы получили в современной электронной технике, где они используются для сравнения напряжений и токов. Для этой цели был разработан специальный тип интегральных микросхем. Сравнение, выполняемое компаратором, может быть одно- и разновременным. Первое из них используется гораздо чаще. В электронных компараторах оно реализуется (рис. 11.12) путем последовательного соединения вычитающего устройства (ВУ), формирующего разность входных сигналов (X1 - X2), и усилителя переменного напряжения с большим коэффициентом усиления (усилителя-ограничителя УО), выполняющего функции индикатора знака разности. Выходной сигнал УО равен его положительному напряжению питания (принимаемого за логическую единицу), если разность (X1 - X2) > 0, и отрицательному напряжению питания (принимаемому за логический нуль), если

Рис. 11.12. Структурная схема компаратора (а) и его функция

                    преобразования (б)

 

Функция преобразования идеального компаратора, показанная на рис. 11.12, б, описывается уравнением

Степень совершенства компаратора определяется минимально возможным порогом чувствительности Dп, а также его быстродействием — временем переключения из одного состояния в другое. У идеального компаратора порог Dп и время переключения равны нулю. В реальном компараторе наличие порога приводит к возникновению аддитивной погрешности.

Измерительный преобразователь (ИП) предназначен для выполнения одного измерительного преобразования. Его работа протекает в условиях, когда помимо основного сигнала X, связанного с измеряемой величиной, на него воздействуют множество других сигналов Zi, рассматриваемых в данном случае как помехи (рис. 11.13,а).

 

Рис. 11.13. Структурная схема измерительного преобразователя (а)

                    и его функции преобразования (б)

 

Важнейшей характеристикой ИП является функция (уравнение) преобразования (рис. 11.13, б), которая описывает статические свойства преобразователя и в общем случае записывается в виде Y = F(X, Z;).

В подавляющем большинстве случаев стремятся иметь линейную функцию преобразования. Функция Y(X) идеального ИП при отсутствии помех описывается уравнением Y = kX. Она линейна, безынерционна, стабильна и проходит через начало координат. Реальная передаточная функция в статическом режиме имеет вид Y = k(1 + g)X + D0 + D[F(X)] и может отличаться от идеальной смещением нуля D0, наклоном g и нелинейной составляющей D[F(X)]. Такие отклонения реальной передаточной функции ИП приводят к возникновению аддитивной, мультипликативной и нелинейной составляющих погрешности.


Оцените книгу: 1 2 3 4 5