Название: Метрология - Сергеев А.Г.

Жанр: Маркетинг

Рейтинг:

Просмотров: 2177


Рис. 11.20. Структурная схема автоматизированного

                   магнитоизмерительного комплекса

 

Для измерения параметров и характеристик испытуемый магнитный материал необходимо пере магнитить. Это осуществляется подачей испытательного сигнала — напряжения. При измерении ряда параметров должен быть обеспечен заданный режим перемагничивания, т.е. определенный закон изменения магнитной индукции в испытуемом образце (см. пример 2.4 в разд. 2.7). В частности, ГОСТ 12119-80 требует, чтобы при измерении удельных потерь индукция в испытуемом образце изменялась по синусоидальному закону, причем коэффициент гармоник не должен превышать 2%.

Испытательные сигналы в АМК формируются источником перемагничивающего сигнала (ИПС), состоящим из ЦАП, усилителя мощности (УМ) и аттенюатора (Атт). Формирование перемагничивающего сигнала происходит следующим образом. Компьютер по математической модели, описывающей требуемый сигнал, рассчитывает цифровой код, который представляется в виде массива из N=256 двоичных 12-разрядных чисел. Эти коды записываются в два буферных оперативных запоминающих устройства ЦАП (на рис. 11.20 не показаны). Из одного такого устройства последовательно во времени с частотой дискретизации fN коды поступают в 12-разрядный ЦАП, где преобразуютсяв переменное напряжение заданной частоты f и формы. Оно усиливается УМ и через аттенюатор поступает на блок первичных преобразователей (БПП). Аттенюатор предназначен для ступенчатого изменения уровня выходного сигнала в широких пределах, что дает возможность испытывать образцы магнитных материалов различных размеров.

Для формирования заданного закона перемагничивания используются итерационные методы [87], суть которых состоит в том, чтобы рассчитать и сформировать испытательный сигнал такой формы, при перемагничивании которым магнитная индукция в образце изменялась бы по заданному закону. Процесс формирования занимает во времени несколько тактов итераций, в течение которых закон изменения магнитной величины последовательно приближается к требуемому. Форма перемагничивающего напряжения задается программно.

Блок первичных преобразователей содержит испытуемый магнитный образец МО с намагничивающей w1 и измерительной w2 обмотками и эталонный резистор R0. Ток с выхода аттенюатора, протекая по намагничивающей обмотке, перемагничивает испытуемый образец. Для получения измерительных сигналов, пропорциональных магнитной индукции и напряженности поля, в комплексе используются первичные преобразователи, рассмотренные в примере 11.2 (см. рис. 11.14).

Переменные напряжения, пропорциональные скорости изменения магнитной индукции и напряженности магнитного поля, поступают на вход измерительного канала, состоящего из коммутатора (Ком), масштабирующего усилителя (МУ) и 12-разрядного АЦП. В канале измеряемое переменное напряжение преобразуется в 256 значений цифрового кода, пропорциональных мгновенным значениям измеряемых напряжений в 256 точках дискретизации, равномерно распределенных по периоду измеряемого напряжения. Полученные массивы цифровых кодов поступают в компьютер, где путем пересчета определяются требуемые магнитные характеристики. Коммутатор реализует подключение четырех возможных входных сигналов u1..., u4 (см. рис. 11.20). Последние два сигнала u3 и u4 нужны для автоматической калибровки коэффициента передачи масштабирующего усилителя (Е0) и устранения смещения нуля в измерительном канале (нулевой потенциал).

Масштабирующий усилитель осуществляет автоматический выбор одного из восьми пределов измерения. Это делается для того, чтобы его выходной сигнал лежал в диапазоне 5,12 ... 10,24 В, наиболее подходящем для эффективной работы АЦП. Установленный коэффициент передачи усилителя используется в управляющем компьютере для пересчета выходного кода АЦП в напряжение и далее в магнитную величину. Поскольку АЦП преобразует биполярный переменный сигнал, то для учета знака используется старший, двенадцатый разряд выходного кода. В этом случае мгновенное значение j-ro (j = l,..., 4) входного напряжения коммутатора

где Uоп — прецизионное постоянное напряжение, используемое в АЦП, kj, kyj — коэффициенты передачи коммутатора и масштабирующего усилителя при измерении j-ro входного сигнала; Nj(ti) — мгновенное значение выходного кода АЦП при измерении j-ro входного сигнала.

При измерении магнитных величин напряжения u1 и u2 описываются формулами (11.6) и (11.7). Из приведенного выше уравнения с учетом этих формул легко получить выражения, по которым компьютер проводит расчет мгновенных значений напряженности поля и скорости изменения магнитной индукции:

Для определения мгновенных значений магнитной индукции используются известные формулы численного интегрирования. Полученные пары [H(ti); B(ti)] описывают множество точек петли гистерезиса. С их помощью можно рассчитать практически любые магнитные характеристики и параметры испытуемого образца.

Программное обеспечение комплекса написано на языках Паскаль и Ассемблер. Функционально оно может быть разделено на несколько взаимосвязанных частей — подсистем, обеспечивающих ввод/вывод исходной информации об объекте и режимах испытаний, проведение различных режимов испытаний, вывод измерительной информации и ее архивирование, оперативную диагностику состояния комплекса, тестирование блоков комплекса.


Оцените книгу: 1 2 3 4 5