Название: Метрология - Сергеев А.Г.

Жанр: Маркетинг

Рейтинг:

Просмотров: 2171


Подсистема ввода/вывода исходной информации предназначена для настройки комплекса на измерение свойств конкретного образца при выбранном законе изменения магнитной индукции. Подсистема режимов испытаний является основной и дает возможность проводить: проверку метрологических параметров измерительного канала; установку амплитудных значений индукции и напряженности поля; магнитную подготовку испытуемого образца; измерение кривой намагничивания и кривой потерь; измерение петли гистерезиса и ее характерных точек; построение графиков ранее измеренных зависимостей, хранимых в виде файлов. При измерении всех характеристик имеется возможность выводить данные на диск, принтер, а также получать на экране монитора графики полученных зависимостей. Подсистема тестирования модулей комплекса позволяет контролировать метрологические характеристики ЦАП, АТТТТ и измерительного канала в целом. Для этого в состав комплекса включен (см. рис. 11.20) программно-управляемый прецизионный калибратор, состоящий из ПАП, усилителя (УК) и делителя (ДК) калибратора.

 

11.7. Моделирование средств измерений

 

11.7.1. Структурные элементы и схемы средств

               измерений

 

Построение и изучение СИ невозможно без математических моделей, адекватно описывающих те или иные их свойства и характеристики. В метрологии используется моделирование измерительных сигналов (см. гл. 10)и моделирование средств измерений.

Математическая модель СИ описывает взаимосвязь его показаний Y со значением измеряемой величины X, конструктивными параметрами а1, а2,..., aL и влияющими величинами z1, z2,...,zK: Y = F(x; a1, a2,... aL; z1, z2,...,zK).

Для построения математических моделей (ММ) СИ необходимо знать, как устроены СИ и каким образом происходит преобразование измерительных сигналов, т.е. нужно знать структуру СИ. Для сложных СИ, каковыми являются большинство современных приборов, анализ их составных частей и ММ является далеко не простой задачей. Для ее оптимального решения, а также для упрощения анализа процессов, протекающих в СИ, введены понятия структурной схемы и измерительных цепи, канала и тракта.

Измерительная цепь — совокупность элементов СИ, образующих непрерывный путь прохождения измерительного сигнала от входа до выхода и обеспечивающих осуществление всех его преобразований.

Измерительный канал — это измерительная цепь, образованная последовательным соединением СИ и других технических устройств, предназначенная для измерения одной величины и имеющая нормированные метрологические характеристики.

Измерительный тракт — совокупность измерительных каналов, предназначенных для измерения определенной величины и имеющих одинаковые метрологические характеристики.

Структурная схема — условное обозначение измерительной цепи (канала или тракта) СИ с указанием преобразуемых величин. Эта схема определяет основные структурные блоки СИ, их назначение и взаимосвязи.

Основной предпосылкой, использованной при введении этих понятий, было обоснованное допущение о том, что каждое преобразование сигнала происходит в отдельном звене или блоке. Структурные схемы состоят из соединенных определенным образом структурных элементов (блоков), каждый из которых выполняет одну из ряда функций, связанных с измерением. Свойства структурных элементов или их совокупностей описываются с помощью соответствующих уравнений, известных из физики, электротехники, электроники и других технических наук.

Основной характеристикой структурного элемента является его функция (уравнение) преобразования Y = f[X, Kj, Zi] — уравнение, связывающее между собой входной X и выходной Y сигналы элемента, его параметры Kj и в ряде случаев внешние влияющие величины Zi. Функция преобразования структурного блока является его математической моделью. Ее вид зависит от того, насколько полно элемент необходимо описать, и какие его свойства являются для исследователя наиболее важными. Например, ММ идеального усилителя может быть записана в виде uвых(t) = kuвх(t), где k — коэффициент усиления, являющийся постоянным параметром усилителя. Если необходимо учесть напряжение смещения и0 на его выходе, модель запишется в виде uвых(t) = kuвх(t) + u0 . Процесс уточнения модели усилителя можно продолжить и дальше. Например, учесть его фазочастотные характеристики, влияние внешней температуры и т.д.

Структурные элементы могут быть классифицированы по ряду признаков. По типу выходного сигнала они разделяются на активные, генерирующие физические величины — носители энергии (например, аккумуляторы, усилители сигналов разного рода, источники света, излучения и др.), и пассивные, свойства которых зависят от состояния материи и выражаются физическими величинами, не являющимися носителями энергии (например, электрические сопротивления, емкости, индуктивности, оптические элементы — призмы, зеркала и др.).

По виду связи между входной и выходной величинами структурные блоки делятся на линейные и нелинейные. Линейными называются блоки, передаточные функции которых удовлетворяют условиям аддитивности f[X1(t) + X2(t)] = f[X1(t)] + f[X2(t)] и однородности f[CX(t)] = Cf[X(t)]. Параметры линейных блоков не зависят от параметров входного сигнала. Это наиболее простой и удобный для анализа тип блоков, поэтому для решения измерительной задачи по возмо ::ности следует выбирать линейные элементы. Примером линейного блока является идеальный усилитель.

Для нелинейных блоков связь между входным и выходным сигналами описывается функцией f, не удовлетворяющей приведенным выше условиям. Эти блоки делятся на квазилинейные и функциональные. Квазилинейные блоки характеризуются незначительной нелинейностью и считаются линейными при изменении входной и выходной величин в определенных диапазонах. Функциональным блокам присуща значительная нелинейность, которая учитывается построением соответствующей нелинейной математической модели.


Оцените книгу: 1 2 3 4 5