Название: Метрология - Сергеев А.Г.

Жанр: Маркетинг

Рейтинг:

Просмотров: 2178


В зависимости от динамических свойств структурные блоки делятся на статические и динамические. В статических блоках взаимосвязь между выходной и входной величинами не зависит от скорости изменения входного сигнала и его производных более высоких порядков. Если такую зависимость необходимо учитывать, то данный структурный блок следует считать динамическим. Различают динамические блоки первого, второго и высших порядков. Характеристики динамических блоков первого и второго порядков рассмотрены в разд. 11.3.

Структурные блоки также классифицируются по функции, выполняемой в СИ. По этому признаку они делятся на усилители различных видов, делители, дифференциаторы, интеграторы, коммутаторы, ключи, АЦП, ЦАП, фильтры и др. Кроме аналоговых структурных элементов существует большое число цифровых элементов, используемых при построении СИ. К ним относятся логические элементы, триггеры, регистры, счетчики, шифраторы и дешифраторы, мультиплексоры, компараторы кодов и др. Их Построение, свойства и применение рассматриваются в многочисленной специальной литературе, например [93].

Чрезвычайно важным цифровым устройством, все больше и больше применяемым в СИ, является микропроцессор — полупроводниковый прибор, осуществляющий автоматическую обработку цифровой информации в соответствии с заданной программой и выполненныйв виде одной'или нескольких интегральных микросхем. Миниатюрные размеры и незначительная масса, малое потребление энергии позволяют включать его непосредственно в электрическую схему измерительного прибора. В СИ он выполняет функции приема, обработки и передачи информации, а также управления работой их составных частей. Вопросы применения микропроцессоров в измерительной технике детально рассмотрены в [71, 94].

На структурных схемах элементы изображаются в виде прямоугольников, внутри которых написано или каким-то образом условно обозначено их название. Кроме того, на схемах обязательно должно быть показано направление распространения измерительной информации, т. е. обозначены входы и выходы структурных элементов. Часто приводят поясняющие надписи, временные зависимости сигналов в характерных точках, таблицы и пр.

 

Пример 11.5. Структурная схема устройства для измерения температуры при помощи термопары показана на рис. 11.21. Термопара (ТП) помещается в объем, где измеряется температура Т. Она генерирует на своем выходе термо ЭДС е1(Т) = kTТ, где kT — коэффициент передачи ТП. Эта ЭДС усиливается усилителем (У) до значения е2(Т) = kye1(T) = kykTT, где ky — коэффициент усиления усилителя. Сигнал е2(Т) воздействует на регистрирующее устройство (РУ), на выходе которого фиксируются показания N(T), пропорциональные измеряемой температуре Т:

                                          (11.9)

где kpy — коэффициент передачи регистрирующего устройства. Данное уравнение является уравнением преобразования рассматриваемого средства измерений.

 

Рис. 11.21. Структурная схема термоэлектрического термометра

 

Структурные схемы СИ очень разнообразны. Однако в зависимости от соединения элементов структурной схемы различают два oсновных их вида: прямого и уравновешивающего (компенсационного) преобразования измерительного сигнала. Они существенно различаются по составу результирующей погрешности измерений и ее зависимости от погрешностей отдельных элементов структурной схемы [92].

 

11.7.2. Структурная схема прямого преобразования

 

Отличительная черта СИ, имеющего структурную схему прямого преобразования (рис. 11.22), состоит в том, что все преобразования Измерительного сигнала производятся в прямом направлении. Схема состоит из n последовательно соединенных блоков.

Рис. 11.22. Структурная схема прямого преобразования

 

На схеме через К1, К.,, ..., Кn обозначены коэффициенты преобразования блоков. Каждый i-й коэффициент определяется по формуле К = dUi/dUi-1, где

Ui-1 и Ui — входной и выходной сигналы i-го блока.

Входной сигнал Uвх, несущий информацию об измеряемой величине, последовательно преобразуется в промежуточные сигналы U1, U2,..., Un-1 и в выходной сигнал Uвыx. В общем случае каждый из них является переменным во времени и может быть представлен в виде суммы гармонических составляющих. В связи с этим коэффициент Кi должен выражаться комплексным числом, а анализ структурных схем проводиться с использованием теории функций комплексного переменного. Однако для простоты рассмотрения будем считать, что информативным параметром сигнала является только его амплитуда (это чаще всего и бывает на практике). Тогда коэффициенты преобразования выразятся вещественными числами. Предположим также, что коэффициенты преобразования не зависят от уровня сигнала, т.е. звенья считаются линейными: К( = const.


Оцените книгу: 1 2 3 4 5