Название: Метрология - Сергеев А.Г.

Жанр: Маркетинг

Рейтинг:

Просмотров: 2172


является несмещенной и состоятельной.

СКО случайной величины х определяется как корень квадратный из дисперсии. Соответственно его оценка может быть найдена путем извлечения корня из оценки дисперсии. Однако эта операция является нелинейной процедурой, приводящей к смещенности получаемой таким образом оценки. Для исправления оценки СКО вводят поправочный множитель k(n), зависящий от числа наблюдений n. Он изменяется от k(3) = 1,13 до k(¥) » 1,03. Оценка среднего квадратического отклонения

Полученные оценки МО и СКО являются случайными величинами. Это проявляется в том, что при повторениях серий из n наблюдений каждый раз будут получаться различные оценки х̅ и s̃. Рассеяние этих оценок целесообразно оценивать с помощью СКО Sx̅ и Ss. Оценка СКО среднего арифметического значения

                          (6.10)

Оценка СКО [4, 48] среднего квадратического отклонения

Отсюда следует, что относительная погрешность определения СКО может быть оценена [4] как

Оназависит только от эксцесса и числа наблюдений в выборке и не зависит от СКО, т.е. той точности, с которой производятся измерения. Ввиду того, что большое число измерений проводится относительно редко, погрешность определения а может быть весьма существенной. В любом случае она больше погрешности из-за смещенности оценки, обусловленной извлечением квадратного корня и устраняемой поправочным множителем k(n). В связи с этим на практике пренебрегают учетом смещенности оценки СКО отдельных наблюдений и определяют его по формуле

                 (6.11)

т.е. считают k(n) = l.

Иногда оказывается удобнее использовать следующие формулы для расчета оценок СКО отдельных наблюдений и результата измерения:

      (6.12)

Точечные оценки других параметров распределений используются значительно реже. Оценки коэффициента асимметрии и эксцесса находятся по формулам [55]

               

Определение рассеяния оценок коэффициента асимметрии и эксцесса описывается различными формулами в зависимости от вида распределения. Краткий обзор этих формул приведен в [4].

 

6.5. Доверительная вероятность и доверительный

         интервал

 

Рассмотренные точечные оценки параметров распределения дают оценку в виде числа, наиболее близкого к значению неизвестного параметра. Такие оценки используют только при большом числе измерений. Чем меньше объем выборки, тем легче допустить ошибку при выборе параметра. Для практики важно не только получить точечную оценку, но и определить интервал, называемый доверительным, между границами которого с заданной дове рителъной вероятностью

где q — уровень значимости; хн, хв— нижняя и верхняя границы интервала, находится истинное значение оцениваемого параметра.

В общем случае доверительные интервалы можно строить на основе неравенства Чебышева. При любом законе распределения случайной величины, обладающей моментами первых двух порядков, верхняя граница вероятности попадания отклонения случайной величины х от центра распределения Хц в интервал tSx описывается неравенством Чебышева

где Sx — оценка СКО распределения; t — положительное число.

Для нахождения доверительного интервала не требуется знать закон распределения результатов наблюдений, но нужно знать оценку СКО. Полученные с помощью неравенства Чебышева интервалы оказываются слишком широкими для практики. Так, доверительной вероятности 0,9 для многих законов распределений соответствует доверительный интервал 1,6SX. Неравенство Чебышева дает в данном случае 3,16SX. В связи с этим оно не получило широкого распространения.


Оцените книгу: 1 2 3 4 5