Название: Метрология - Сергеев А.Г.

Жанр: Маркетинг

Рейтинг:

Просмотров: 2176


Определение закона распределения результатов измерений или случайных погрешностей измерений. В последнем случае от выборки результатов измерений х1, х2, х3,-.., хn переходят к выборке отклонений от среднего арифметического Dх1, Dх2, Dх3,..., Dхn, где Dxi = xi - х̅.

Первым шагом при идентификации закона распределения является построение по исправленным результатам измерений xi, где I = 1, 2,..., n, вариационного ряда (упорядоченной выборки), а также уi, где уi = min(xi) и уn = mах(хi). В вариационном ряду результаты измерений (или их отклонения от среднего арифметического) располагают в порядке возрастания. Далее этот ряд разбивается на оптимальное число m, как правило, одинаковых интервалов группирования длиной h = (y1 + yn) / m .

Задача определения оптимального числа m интервалов группирования рассматривалась в ряде работ, обзор которых дан в [4]. Оптимальным является такое число интервалов m, при котором возможное максимальное сглаживание случайных флуктуации данных сопровождается с минимальным искажением от сглаживания самой кривой искомого распределения. Для практического применения целесообразно использовать предложенные в [4] выражения mmin =0,55n0,4  и mmax = 1,25n0,4, которые получены для наиболее часто встречающихся на практике распределений с эксцессом, находящимся в пределах от 1,8 до 6, т.е. от равномерного до распределения Лапласа.

Искомое значение m должно находится в пределах от mmjn до mmax, быть нечетным, так как при четном m в островершинном или двухмодальном симметричном распределении в центре гистограммы оказываются два равных по высоте столбца и середина кривой распределения искусственно уплощается. В случае, если гистограмма распределения явно двухмодальная, число столбцов может быть увеличено в 1,5-2 раза, чтобы на каждый из двух максимумов приходилось примерно по m интервалов. Полученное значение длины интервала группирования h всегда округляют в большую сторону, иначе последняя точка окажется за пределами крайнего интервала.

Далее определяют интервалы группирования экспериментальных данных в виде D1 = (у1, y1 + h); D2= (y1 +h, y1 + 2h);....; Dm = (yn - h; уn), и подсчитывают число попаданий nk (частоты) результатов измерений в каждый интервал группирования. Сумма этих чисел должна равняться числу измерений. По полученным значениям рассчитывают вероятности попадания результатов измерений (частости) в каждый из интервалов группирования по формуле pk= nk/n, где k=l, 2,..., m.

Проведенные расчеты позволяют построить гистограмму, полигон и кумулятивную кривую. Для построения гистограммы по оси результатов наблюдений х (рис. 8.1,а) откладываются интервалы Dk в порядке возрастания номеров и на каждом интервале строится прямоугольник высотой pk. Площадь, заключенная под графиком, пропорц/иональна числу наблюдений n. Иногда высоту прямоугольника откладывают разной эмпирическoй плотности вероятности pk = Pk /Dk = nk/(nDk), которая является оценкой средней плотности в интервале Dk. В этом случае площадь под гистограммой равна единице. При увеличении числа интервалов и соответственно уменьшении их длины гистограмма все более приближается к гладкой кривой — графику плотности распределения вероятности. Следует отметить, что в ряде слуяаев производят расчетное симметрирование гистограммы, методика которого приведена в [4 ]

Полигон представляет собой ломаную кривую, соединяющую середины верхних оснований каждого столбца гистограммы (см. рис. 8.1,а). Он более наглядно, чем гистограмма, отражает форму кривой распределения. За пределами гистограммы справа и слева остаются пустые интервалы, в которых точки, соответствующие их серединам, лежат на оси абсцисс.

 

                

Рис. 8.1. Гистонрамма, полигон (а) и кумулятивная кривая (б)

 

Эти точки при построении полигона соединяют между собой отрезками прямых линий. В результате совместно с осью х образуется замкнутая фигура, площадь которой в соответствии с правилом нормирования должна быть равна единице (или числу наблюдений при использовании частостей).

Кумулятивная кривая — это график статистической функции распределения. Для ее построения по оси результатов наблюдений х (рис. 8.1,6) откладывают интервалы Dk в порядке возрастания номеров и на каждом интервале строят прямоугольник высотой

Значение Fk называется кумулятивной частостью, а сумма nk— кумулятивной частотой.

По виду построенных зависимостей может быть оценен закон распределения результатов измерений.

Оценка закона распределения по статистическим критериям. При числе наблюдений n > 50 для идентификации закона распределения используется критерий Пирсона (хи-квадрат, см. 8.1.2) или критерий Мизеса—Смирнова (w2). При 50 > n > 15 для проверки нормальности закона распределения применяется составной критерий (d-критерий), приведенный в ГОСТ 8.207-76. При n < 15 принадлежность экспериментального распределения к нормальному не проверяется.

Определение доверительных границ случайной погрешности. Если удалось идентифицировать закон распределения результатов измерений, то с его использованием находят квантильный множитель zp при заданном значении доверительной вероятности Р. В этом случае доверительные границы случайной погрешности А = ±zpS -.


Оцените книгу: 1 2 3 4 5