Название: Методика преподавания информатики - Лапчик М.П.

Жанр: Информатика

Рейтинг:

Просмотров: 959


3) придать модели черты оптимизационной (самостоятельно или с помощью учителя), выполнить указанные исследования, провести содержательное сравнение результатов исследования.

По использованной здесь схеме могут вводиться и исследоваться другие модели, где учитывается сопротивление среды. При этом уже нет нужды отвлекаться на изучение численных методов решения систем дифференциальных уравнений, поскольку это достаточно проделать аккуратно только один раз, скажем, на примере рассмотренной выше модели.

Перечислим модели движения тела в среде, которые допускают достаточно простое исследование:

• движение тела, брошенного под углом к горизонту, с учетом сопротивления среды;

• взлет ракеты (особенность — масса тела меняется в ходе движения);

• различные задачи на прицельную стрельбу при движении «снаряда» в среде (в воздухе, под водой и т.д.).

Многие такие задачи сформулированы в пособии [6].

При моделировании движения тел эффективным методическим приемом является обезразмеривание величин, входящих в математическую модель. Обезразмеривание заключается в том, что вместо абсолютных единиц системы СИ (или какой-либо другой) переходят к относительным единицам, естественным именно для данного движения. При этом существенно их правильновыбрать. Например, при изучении движения тела, брошенного под углом к горизонту, при отсутствии сопротивления среды легко получить выражения для дальности полета по горизонтали L, максимальной высоты полета H, полного времени полета Т (отсылаем к школьным учебникам физики). Введем новые переменные для скорости, перемещения и времени. Будем измерять х- и у-компоненты скорости относительно ее начального значения, перемещение в горизонтальном направлении — относительно L, в вертикальном — относительно H, время — относительно Т. Это означает введение новых переменных, которые обозначим так:

Переходя в дифференциальных уравнениях модели к новым переменным, получаем в них безразмерные комбинации параметров, определяющих закономерности движения.

Смысл этой деятельности заключается в следующем. Во-первых, следует подчеркивать большую естественность в использовании относительных (безразмерных) единиц измерения физических величин, нежели абсолютных. Диапазон значений безразмерных величин неширок, в данной задаче, очевидно, что в любой момент времени в ходе движения тела Vx, Vy, X, Y, t < 1. Это удобно, особенно при решении задач, в которых значения (размерных) переменных изображаются очень малыми или очень большими числами. Получив, например, в какой-то момент значение Х = 0,3, мы понимаем, что это составляет 0,3 от максимального движения по горизонтали в отсутствие трения, т.е. всякий раз чувствуем смысл, чего не скажешь, получив, например, значение х = 26 м/с.

Важнейшая роль обезразмеривания — установление законов подобия. У изучаемого движения есть множество вариантов, определяемых наборами значений параметров, входящих в исходные уравнения или являющихся для них начальными условиями. После обезразмеривания переменных появляются безразмерные комбинации параметров, фактически определяющие характер движения. Если изучаются два разных движения с разными размерными параметрами, но такие, что значения безразмерных параметров одинаковы, то движения будут качественно одинаковы (подобны). Число таких комбинаций обычно меньше числа размерных параметров, что тоже создает удобство при полном численном исследовании всевозможных ситуаций, связанных с этим процессом.

Сделаем оговорку: обезразмеривание — полезный методический прием. Однако если учащиеся испытывают трудности с его пониманием и использованием, настаивать на этом необязательно; те же по существу результаты можно получить и при использовании уравнений в размерных переменных.

Моделирование колебательных движений. В этой и в последующих обсуждаемых моделях практически откажемся от записи формул; математические формулировки можно найти в указанной ниже литературе (например, пособиях [5, 8]).

Колебательные изменения значений величин встречаются в естественных (природных и общественных) и искусственных (технических) системах столь часто, что, несомненно, заслуживают внимания при изучении компьютерного математического моделирования.

По традиции изучение колебательного движения чаще всего начинается с так называемого математического маятника — идеализированной системы, состоящей из тела массы т, прикрепленного к концу жесткого «невесомого» стержня длиной l, верхний конец которого вращается без трения в точке подвеса. Поскольку его движение при малых амплитудах описано в школьных учебниках физики и полностью поддается исследованию аналитически, без привлечения компьютера и численных методов, то методически целесообразно, отметив указанное выше обстоятельство и напомнив учащимся основные результаты, связанные с малыми (гармоническими) колебаниями (для удобства эти формулы приведены ниже), перейти к рассмотрению модели движения математического маятника при произвольном (не малом) начальном угле отклонения.


Оцените книгу: 1 2 3 4 5