Название: Методика преподавания информатики - Лапчик М.П.

Жанр: Информатика

Рейтинг:

Просмотров: 959


Вернемся к исследованию движения небесных тел в Солнечной системе. Учащиеся задают некоторые (возможно, произвольные) начальные условия и интегрируют уравнения. Первая цель — построить траекторию движения и поэкспериментировать, как она будет меняться при изменении начальных условий (например, скорости).

Далее исследование можно усложнить. Так, при движении по замкнутым орбитам можно поставить задание: проверить справедливость законов Кеплера о соотношении параметров орбиты; при движении по незамкнутым орбитам — доказать, что ее формой будет гипербола, и т.д. Многие задания для самостоятельной работы можно найти в задачнике [5].

Если придерживаться методики, избегающей упоминания о дифференциальных уравнениях вообще, то уравнения модели можно сразу записать в конечно-разностной форме. Они получаются из второго закона Ньютона, представленного в конечно-разностной форме, и закона всемирного тяготения. Разумеется, с точки зрения дифференциального подхода, это есть применение

метода Эйлера к дифференциальным уравнениям модели уравнениям.

Моделирование движения заряженных частиц. Из курса физики учащимся знаком закон Кулона, описывающий взаимодействие точечных зарядов. Он похож на закон всемирного тяготения, но роль масс играют заряды.

Наиболее простые модели в данном разделеполучаются при моделировании движения одного заряженного тела в поле, создаваемом другим заряженным телом («неподвижным», находящемся в начале выбранной системы координат). В этой ситуации уравнения модели практически совпадают с уравнениями движения небесного тела — с точностью до обозначений. Рассматривать более сложную ситуацию, когда несколько зарядов движутся относительно друг друга, методически нецелесообразно.

Если рассматривать систему из двух зарядов противоположных знаков, то ситуация полностью аналогична задаче двух тяготеющих тел, обсуждавшейся выше. Если же рассмотреть движение заряда, одноименного по знаку с тем, который находится в начале координат, то в соответствующих уравнениях просто сменятся знаки; однако траектории движения будут совсем непохожи на траектории движения в случае разноименных зарядов. Соответствующее моделирование вполне посильно учащимся, особенно если эта тема следует за моделированием движения небесных тел.

После проведения простых численных экспериментов по моделированию движения заряженного тела можно перейти к более сложным проектам исследовательского характера. Задания для таких проектов можно найти, в частности, в задачнике [5].

Моделирование физических процессов в приближении сплошной среды. Целью этих занятий является как углубление навыков моделирования физических процессов, так и выработка реального понимания понятия «сплошная среда», столь важного в физическом мире. Кроме того, возникает возможность еще раз продемонстрировать в работе прием дискретизации, фундаментальный для информатики.

План занятий по этой теме может быть следующим. Вначале проведите лекцию на тему, что отражает абстрактное понятие «сплошная среда». Физические примеры — жидкости, газы; близкие примеры из самой информатики — графическая информация, звуковая информация и т.д. Напомните учащимся, что при описании явлений, проистекающих в сплошной среде, свойства объекта описываются с помощью непрерывных величин (функций). Примеры, которые здесь уместны, связаны с диффузией, теплопроводностью, потоками жидкости и газа, распространением электромагнитных волн и др.

На той же лекции уместно рассмотреть вопрос о роли научной графики в компьютерном моделировании. Так, при моделировании процесса теплопроводности стоит задача наиболее наглядно показать динамику изменения температуры. При этом уместно прибегнуть к условной раскраске или условному контрастированию — мощному приему научной графики. Он находит широчайшее применение и представляет собой набор приемов по максимально удобной, хотя и условной, визуализации результатов компьютерного моделирования.

Например, в различных исследованиях температурных полей возникает проблема наглядного представления результатов. Самый простой (и весьма неэффективный) — привести карту (чертеж, план), в некоторых точках которой обозначены значения температуры. Другой способ — набор изотерм — гораздо эффективнее. Можно добиться еще большей наглядности, учитывая, что большинству людей свойственно, сравнивая разные цвета, воспринимать красный как «горячий», голубой как «холодный», а все остальные — между ними. Наглядность достигается окрашиванием самого «горячего» участка в ярко-красный цвет, самого «холодного» — в ярко-голубой, а остальных — в промежуточные цвета. Получится наглядная картина температурного поля.

А что делать, если дисплей монохромный? Или если изображение нужно перенести с цветного дисплея на бумагу при отсутствии возможности цветной печати? Тогда роль цвета может сыграть контраст. Сделаем самый «горячий» участок самым темным, самый «холодный» — прозрачным, а остальные — между ними. Эффектность, конечно, меньше, чем при цветовой раскраске, но определенная наглядность достигается.

То же самое можно делать и при иллюстрации температурного поля на поверхности обрабатываемой на станке детали, и поля температур, полученного путем радиолокации поверхности далекой планеты, и во множестве других задач.

Для конкретного моделирования явлений в приближении сплошной среды следует отобрать максимально простые задачи, поскольку соответствующие модели достаточно сложны. Такие задачи могут быть статическими и динамическими. Из статических задач наиболее простыми представляются моделирование распределения поля температур или электростатического поля. Из динамических задач, модели которых рассматривались в школьном курсе информатики, известна задача теплопроводности в стержне — вероятно, самая простая задача такого рода.


Оцените книгу: 1 2 3 4 5