Название: Методика преподавания информатики - Лапчик М.П.

Жанр: Информатика

Рейтинг:

Просмотров: 959


Математические модели в экологии используются практически с момента возникновения этой науки. И хотя поведение организмов в живой природе гораздо труднее адекватно описать средствами математики, чем самые сложные физические процессы, модели помогают установить некоторые закономерности и общие тенденции развития отдельных популяций, а также сообществ. Кажется удивительным, что люди, занимающиеся живой природой, воссоздают ее в искусственной математической форме, но есть веские причины, которые стимулируют эти занятия. Вот основные цели создания математических моделей в классической экологии:

1. Модели помогают выделить суть или объединить и выразить с помощью нескольких параметров важные разрозненные свойства большого числа уникальных наблюдений, что облегчает экологу анализ рассматриваемого процесса или проблемы.

2. Модели выступают в качестве «общего языка», с помощью которого может быть описано каждое уникальное явление, и относительные свойства таких явлений становятся более понятными.

3. Модель может служить образцом «идеального объекта» или идеализированного поведения, при сравнении с которым можно оценивать и измерять реальные объекты и процессы.

Модель считается адекватной рассматриваемому явлению только в том случае, если она выполняет одну из указанныхвыше функций.

При проведении беседы следует обратить внимание учащихся на то, что привлечение компьютеров существенно раздвинуло границы моделирования экологических процессов. С одной стороны, появилась возможность всесторонней реализации сложных математических моделей, не допускающих аналитического исследования, с другой — возникли принципиально новые направления, и прежде всего — имитационное моделирование.

После вводной лекции приступаем к построению и исследованию конкретных моделей. Методически уместно начать это с рассмотрения развития популяций с дискретным размножением, после чего следует плавный переход на популяции с непрерывным размножением. Естественная последовательность рассмотрения такова:

• динамическое моделирование численности изолированной популяции с дискретным размножением:

а) при отсутствии внутривидовой конкуренции;

б) при наличии внутривидовой конкуренции;

• динамическое моделирование численности изолированной популяции с непрерывным размножением:

а) при отсутствии внутривидовой конкуренции;

б) при наличии внутривидовой конкуренции;

• динамическое моделирование взаимодействия популяций:

а) состоящих в отношениях межвидовой конкуренции;

б) состоящих в отношениях «хищник— жертва»;

• имитационное моделирование развития популяции и взаимодействия популяций.

Примеры ряда моделей, обозначенных выше, можно найти в пособиях [5, 9, 22, 27, 30, 35]. Обсудим методику их построения и исследования на нескольких примерах.

 

Пример. Моделирование развития изолированной популяции с дискретным размножением с учетом внутривидовой конкуренции.

Рассматриваются биологические виды, для которых потомки и предки не сосуществуют во времени (многочисленные растения, насекомые и др.). Тогда последовательные значения численности популяции можно представить последовательностью N0, N1, ....

Если нет никаких причин ограничения численности популяции, тогда возникает простейшая очевидная модель: Nt+1 = R×Nt, где R — коэффициент воспроизводства. Решение этой модели очевидно: Nt = N0×R1, и при R >1 численность популяции нарастает по геометрической прогрессии.

Даже эта простейшая модель заслуживает обсуждения. Она выражает то, что в литературе иногда называют «законом Мальтуса».

Очевидно, что долго неограниченно возрастать популяция не может. Простейший способ учета внутривидовой конкуренции связан с гипотезой о том, что коэффициент воспроизводства не есть константа, а зависит от численности популяции, спадая по мере ее роста. На этом этапе следуют разъяснить учащимся методику построения моделей в сфере знаний, где основным способом исследования являются наблюдения, в которой точные математические законы отсутствуют в силу сложности системы (в отличие от, например, физики). В такой ситуации делаются достаточно произвольные допущения, в значительной мере оправдываемые простотой, а полезность модели определяется путем сопоставления ее решений с закономерностями поведения реальных систем.


Оцените книгу: 1 2 3 4 5