Название: Методика преподавания информатики - Лапчик М.П.

Жанр: Информатика

Рейтинг:

Просмотров: 962


Бит — основная единица измерения информации. Кроме нее используются и другие единицы. Следует обратить внимание учеников на то, что в любой метрической системе существуют единицы основные (эталонные) и производные от них. Например, основная физическая единица длины — метр. Но существуют миллиметр, сантиметр, километр. Расстояния разного размера удобно выражать через разные единицы. Так же обстоит дело и с измерением информации. 1 бит — это исходная единица. Следующая по величине единица — байт. Байт вводится как информационный вес символа из алфавита мощностью 256. Поскольку 256 = 28, то 1 байт = 8 бит. Мы снова встречаемся с темой, которая является своеобразной пропедевтикой к будущему изучению компьютера.

Уже в рамках данной темы можно сообщить ученикам, что компьютер для внешнего представления текстов и другой символьной информации использует алфавит мощностью 256 (во внутреннем представлении любая информация в компьютере кодируется в двоичном алфавите). Фактически, для выражения объема компьютерной информации в качестве основной единицы используется байт.

Представляя ученикам более крупные единицы: килобайт, мегабайт, гигабайт — нужно обратить их внимание нато, что мы привыкли приставку «кило» воспринимать, как увеличение в 1000 раз. В информатике это не так. Килобайт больше байта в 1024 раза, а число 1024 = 210. Так же относится и «мега» по отношению к «кило» и т.д. Тем не менее часто при приближенных вычислениях используют коэффициент 1000.

В рамках углубленного курса учитель может изложить алфавитный подход в более адекватном варианте, без допущения равновероятности символов. Теоретический и практический материал на эту тему можно найти в пособии [8] в подразделе 1.4.

 

Примеры решения задач

 

Задачи по теме «Измерение информации. Содержательный подход» связаны с использованием уравнения 2i = N. Возможны два варианта условия задачи: 1) дано N, найти i; 2) дано i, найти N.

В случаях, когда N равно целой степени двойки, желательно, чтобы ученики выполняли вычисления «в уме». Как уже говорилось выше, полезно запомнить ряд целых степеней числа 2 хотя бы до 210. В противном случае следует использовать таблицу решения уравнения 2i = N, приведенную в [25] и [8], в которой рассматриваются значения N от 1 до 64.

Для основного уровня изучения базового курса предлагаются задачи, связанные с сообщениями о равновероятных событиях. Ученики должны это понимать и обязательно качественно обосновывать, используя термин «равновероятные события».

 

Пример 1. Сколько бит информации несет сообщение о том, что из колоды в 32 карты достали даму пик?

Решение. При случайном вытаскивании карт из перемешанной колоды ни одна из карт не имеет преимущества быть выбранной по сравнению с другими. Следовательно, случайный выбор любой карты, в том числе и дамы пик — события равновероятные. Отсюда следует, что неопределенность знаний о результате вытаскивания карты равна 32 — числу карт в колоде. Если i — количество информации в сообщении о результате вытаскивания одной карты (дамы пик), то имеем уравнение:

2i = 32.

Поскольку 32 = 25, то, следовательно, i = 5 бит.

На тему данной задачи учитель может предложить еще несколько заданий. Например: сколько информации несет сообщение о том, что из колоды карт достали карту красной масти? (1 бит, так как красных и черных карт одинаковое количество).

Сколько информации несет сообщение о том, что из колоды карт достали карту бубновой масти? (2 бита, так как всего в колоде 4 масти и количество карт в них равные).

 

Пример 2. Проводится две лотереи: «4 из 32» и «5 из 64». Сообщение о результатах какой из лотерей несет больше информации?

Решение. У этой задачи есть «подводный камень», на который может натолкнуться учитель. Первый путь решения тривиальный: вытаскивание любого номера из лотерейного барабана — события равновероятные. Поэтому в первой лотерее количество информации в сообщении об одном номере равно 5 бит (25 = 32), а во второй — 6 бит (2б = 64). Сообщение о четырех номерах в первой лотерее несет 5´4 = 20 бит. Сообщение о пяти номерах второй лотереи несет 6´5 = 30 бит. Следовательно, сообщение о результатах второй лотереи несет больше информации, чем о результатах первой.

Но возможен и другой путь рассуждения. Представьте себе, что вы наблюдаете за розыгрышем лотереи. Выбор первого шара производится из 32 шаров в барабане. Результат несет 5 бит информации. Но 2-й шар будет выбираться уже из 31 номера, 3-й — из 30 номеров, 4-й — из 29. Значит, количество информации, которое несет 2-й номер, находится из уравнения: 2i = 31. Используя таблицу решения этого уравнения, находим: i = 4,95420 бит. Для 3-го номера: 2i = 30; i = 4,90689 бит. Для 4-го номера: 2i' = 29; i = 4,85798 бит. В сумме получаем: 5 + 4,95420 + 4,90689 + 4,85798 = = 19,71907 бит. Аналогично и для второй лотереи. Конечно, на окончательном выводе такие подсчеты не отразятся. Можно было вообще, ничего не вычисляя, сразу ответить, что второе сообщение несет больше информации, чем первое. Но здесь интересен сам путь вычислений с учетом «выбывания участников».


Оцените книгу: 1 2 3 4 5