Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 16751


 где r и r0, R и R0 — соответственно удельные сопротивления и сопротивления проводника при t и 0 °С, a — температурный коэффициент сопротивления, для чистых металлов (при не очень низких температурах) близкий к 1/273 К-1. Следовательно, температурная зависимость сопротивления может быть представлена в виде

 

 где Т — термодинамическая температура.

Качественный ход температурной зависимости сопротивления металла представлен на рис. 147 (кривая 1). Впоследствии было обнаружено, что сопротивление многих металлов (например, Al, Pb, Zn и др.) и их сплавов при очень низких температурах Тk (0,14—20 К), называемых критическими, характерных для каждого вещества, скачкообразно уменьшается до нуля (кривая 2), т. е. металл становится абсолютным проводником. Впервые это явление, названное сверхпроводимостью, обнаружено в 1911 г. Г. Камерлинг-Оннесом для ртути. Явление сверхпроводимости объясняется на основе квантовой теории. Практическое использование сверхпроводящих материалов (в обмотках сверхпроводящих магнитов, в системах памяти ЭВМ и др.) затруднено из-за их низких критических температур. В настоящее время обнаружены и активно исследуются керамические материалы, обладающие сверхпроводимостью при температуре выше100 К.

 

                                      Рис. 147

 

На зависимости электрического сопротивления металлов от температуры основано действие термометров сопротивления, которые позволяют по градуированной взаимосвязи сопротивления от температуры измерять температуру с точностью до 0,003 К. Термометры сопротивления, в которых в качестве рабочего вещества используются полупроводники, изготовленные по специальной технологии, называются термнсторами. Они позволяют измерять температуры с точностью до миллионных долей кельвин.

 

§ 99. Работа и мощность тока.

          Закон Джоуля — Ленца

 

Рассмотрим однородный проводник, к концам которого приложено напряжение U. За время dt через сечение проводника переносится заряд dq = Idt. Так как ток представляет собой перемещение заряда dq под действием электрического поля, то, по формуле (84.6), работа тока

                                      (99.1)

Если сопротивление проводника R, то, используя закон Ома (98.1), получим

                                   (99.2)

 Из (99.1) и (99.2) следует, что мощность тока

                             (99.3)

Если сила тока выражается в амперах, напряжение — в вольтах, сопротивление — в омах, то работа тока выражается в джоулях, а мощность — в ваттах. На практике применяются также внесистемные единицы работы тока: ватт-час (Вт-ч) и киловатт-час (кВт-ч). 1 Вт×ч — работа тока мощностью 1 Вт в течение 1 ч; 1 Вт-ч = 3600 Вт-с = 3,6-103 Дж; 1 кВт-ч=103 Вт-ч=3,6-106 Дж.

Если ток проходит по неподвижному металлическому проводнику, то вся работа тока идет на его нагревание и, по закону сохранения энергии,

                                         (99.4)

Таким образом, используя выражения (99.4), (99.1) и (99.2), получим

                            (99.5)

 Выражение (99.5) представляет собой закон Джоуля — Ленца, экспериментально установленный независимо друг от друга Дж. Джоулем и Э. X. Ленцем[1].

Выделим в проводнике элементарный цилиндрический объем dV = dSdl (ось цилиндра совпадает с направлением тока), сопротивление которого .  По закону Джоуля — Ленца, за время Dt в этом объеме выделится теплота

 

 Количество теплоты, выделяющееся за единицу времени в единице объема, называется удельной тепловой мощностью тока. Она равна

                                    (99.6)


Оцените книгу: 1 2 3 4 5