Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 15512


 Формула (142.3) справедлива для упругих колебаний в пределах, в которых выполняется закон Гука (см. (21.3)), т. с. когда масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, согласно (141.5) и (142.2), равна

 

3. Физический маятник — это твердое тело, совершающее под действием силы тяжести колебания вокруг неподвижной горизонтальной оси, проходящей через точку О, не совпадающую с центром масс С тела (рис. 201).

                                                          Рис. 201

 

Если маятник отклонен из положения равновесия на некоторый угол a, то в соответствии с уравнением динамики вращательного движения твердого тела (18.3) момент М возвращающей силы можно записать в виде

 

где J — момент инерции маятника относительно оси, проходящей через точку подвеса О, l — расстояние между ней и центром масс маятника, Ft = - mgsina » mga  — возвращающая сила (знак минус обусловлен тем, что направления Ft и a всегда противоположны; sina » aсоответствует малым колебаниям маятника, т.e. малым отклонениям маятника из положения равновесия). Уравнение (142.4) можно записать в виде

Подпись: получим 
уравнение
Подпись: Принимая 

 

 

 

 

 

 

 

 

 

 

                                                                                        (142.5)

 

 идентичное с (142.1), решение которого (140.1) известно:

                                  (142.6)

Из выражения (142.6) следует, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой w0 (см. (142.5)) и периодом

             (142.7)

где L = J/(ml) — приведенная длина физического маятника.

Точка О' на продолжении прямой ОС, отстоящая от точки О подвеса маятника на расстоянии приведенной длины L, называется центром качаний физического маятника (рис. 201). Применяя теорему Штейнера (16.1), получим

 

 т. е. ОО' всегда больше ОС. Точка подвеса О маятника и центр качаний О' обладают свойством взаимозаменяемости: если точку подвеса перенести в центр качаний, то прежняя точка О подвеса станет новым центром качаний, и период колебаний физического маятника не изменится.

3. Математический маятник — это идеализированная система, состоящая из материальной точки массой т, подвешенной на нерастяжимой невесомой нити, и колеблющаяся под действием силы тяжести. Хорошим приближением математического маятника является небольшой тяжелый шарик, подвешенный на тонкой длинной нити. Момент инерции математического маятника

                                             (142.8)

 где l — длина маятника.

Так как математический маятник можно представить как частный случай физического маятника, предположив, что вся его масса сосредоточена в одной точке — центре масс, то, подставив выражение (142.8) в формулу (142.7), получим выражение для периода малых колебаний математического маятника


Оцените книгу: 1 2 3 4 5