Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 15410


                                              (152.1)

Из векторной диаграммы (см. рис. 216) следует, что Umcosj = RIm. Поэтому

 

Такую же мощность развивает постоянный ток

Величины

 

 называются соответственно действующими (или эффективными) значениями тока и напряжения. Все амперметры и вольтметры градуируются по действующим значениям тока и напряжения.

Учитывая действующие значения тока и напряжения, выражение средней мощности (152.1) можно записать в виде

                                                          (152.2)

 

где множитель cosj называется коэффициентом мощности.

Формула (152.2) показывает, что мощность, выделяемая в цепи переменного тока, в общем случае зависит не только от силы тока и напряжения, но и от сдвига фаз между ними. Если в цепи реактивное сопротивление отсутствует, то cosj = l и Р = IU. Если цепь содержит только реактивное сопротивление (R = 0), то cosj   = 0 и средняя мощность равна нулю, какими бы большимини были ток и напряжение. Если cosj имеет значения, существенно меньшие единицы, то для передачи заданной мощности при данном напряжении генератора нужно увеличивать силу тока I, что приведет либо к выделению джоулевой теплоты, либо потребует увеличения сечения проводов, что повышает стоимость линий электропередачи. Поэтому на практике всегда стремятся увеличить cosj, наименьшее допустимое значение которого для промышленных установок составляет примерно 0,85.

 

Задачи

 

          18.1. Материальная точка, совершающая гармонические колебания с частотой v=2 Гц, в момент времени t = 0 проходит положение, определяемое координатой х0 =6 см, со скоростью v0 = 14 см/с. Определить амплитуду колебания. [6,1 см]

 

          18.2. Полная энергия гармонически колеблющейся точки равна 30 мкДж, а максимальная сила, действующая на точку, равна 1,5 мН. Написать уравнение движения этой точки, если период колебаний равен 2 с, а начальная фаза p/3. [х = 0,04cos(pt + p/3)]

 

          18.3. При подвешивании грузов массами m1 = 500 г и m2=400 г к свободным пружинам последние удлинились одинаково (Dl =15 см). Пренебрегая массой пружин, определить: 1) периоды колебаний грузов; 2) который из грузов при одинаковых амплитудах обладает большей энергией и во сколько раз. [1) 0,78 с; 2) 1,25]

 

          18.4. Физический маятник представляет собой тонкий однородный стержень длиной 25 см. Определить, на каком расстоянии от центра масс должна быть точка подвеса, чтобы частота колебаний была максимальной. [7,2 см]

 

          18.5. Два математических маятника, длины которых отличаются на Dl =16 см, совершают за одно и то же время: один n1 = 10 колебаний, другой n2—6 колебаний. Определить длины маятников l1 и l2 [l1 ~9 см, l2 =25 см]

 

          18.6. Колебательный контур содержит катушку с общим числом витков, равным 50, индуктивностью 5 мкГн и конденсатор емкостью 2 нФ. Максимальное напряжение на обкладках конденсатора составляет 150 В. Определить максимальный магнитный поток, пронизывающий катушку. (0,3 мкВб]

 

          18.7. Разность фаз двух одинаково направленных гармонических колебаний одинакового периода, равного 8 с, и одинаковой амплитуды 2 см составляет p/4. Написать уравнение движения, получающегося в результате сложения .этих колебаний, если начальная фаза одного из них равна нулю. [x = 0,037соs (pt/4 + p/8)]

 

          18.8. Точка участвует одновременно в двух гармонических колебаниях, происходящих во взаимно перпендикулярных направлениях и описываемых уравнениями x = cospt и y = cospt/2. Определить уравнение траектории точки и вычертить ее с нанесением масштаба. [2y2 – x = 1]

 

          18.9. За время, за которое система совершает 100 полных колебаний, амплитуда уменьшается в три раза. Определить добротность системы. [286]

 

          18.10. Колебательный контур содержит катушку индуктивностью 25 мГн, конденсатор емкостью 10 мкФ и резистор сопротивлением 1 Ом. Заряд на обкладках конденсатора Qm = 1 мКл. Определить: 1) период колебаний контура; 2) логарифмический декремент затухания колебаний; 3) уравнение зависимости изменения напряжения на обкладках конденсатора от времени. [1) 3,14 мс; 2) 0,06; 3) U = 100е-20tcos 636pt]

 

          18.11. Последовательно соединенные резистор с сопротивлением 110 Ом и конденсатор подключены к внешнему переменному напряжению с амплитудным значением 110 В. Оказалось, что амплитудное значение установившегося тока в цепи 0,5 А. Определить разность фаз между током и внешним напряжением. [60°]


Оцените книгу: 1 2 3 4 5