Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 15704


 где с — скорость распространения света в вакууме, v — скорость распространения света в среде. Так как n в среде всегда больше единицы, то, по теории Ньютона, v > с, т. е. скорость распространения света в среде должна быть всегда больше скорости его распространения в вакууме.

Согласно волновой теории, развитой на основе аналогии оптических и акустических явлений, свет представляет собой упругую волну, распространяющуюся в особой среде — эфире. Эфир заполняет все мировое пространство, пронизывает все тела и обладает механическими свойствами — упругостью и плотностью. Согласно Гюйгенсу, большая скорость распространения света обусловлена особыми свойствами эфира.

Волновая теория основывается на принципе Гюйгенса: каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени. Напомним, что волновым фронтом называется геометрическое место точек, до которых доходят колебания к моменту времени t. Принцип Гюйгенса позволяет анализировать распространение света и вывести законы отражения и преломления.

Выведем законы отражения и преломления света, исходя изпринципа Гюйгенса. Пусть на границу раздела двух сред падает плоская волна (фронт волны — плоскость AS), распространяющаяся вдоль направления I (рис. 243). Когда фронт волны достигнет отражающей поверхности в точке А, эта точка начнет излучать вторичную волну. Для прохождения волной расстояния ВС требуется время Dt = BC/v. За это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен vDt = BC. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление распространения этой волны — лучом II. Из равенства треугольников ABC и ADC вытекает закон отражения: угол отражения i¢1  равен углу падения i1.

 

                                                Рис. 243

 

Для вывода закона преломления предположим, что плоская волна (фронт волны — плоскость AS), распространяющаяся в вакууме вдоль направления /со скоростью света с, падает на границу раздела со средой, в которой скорость ее распространения равна v (рис. 244).

                                      Рис. 244

 

Пусть время прохождения волной пути ВС равно Dt. Тогда BС = сDt. За это же время фронт волны, возбуждаемый точкой А в среде со скоростью v, достигнет точек полусферы, радиус которой AD = vDt. Положение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC, а направление ее распространения — лучом III. Из рис. 244 следует, что AC = BC/sin i1 = AD/sin i1, т. е. cDt/sin i1 = vDt/sin i2, откуда

                                      (170.2)

 Сравнивая выражения (170.2) и (170.1), видим, что волновая теория приводит к выводу, отличному от вывода теории Ньютона. По теории Гюйгенса, v < c, т. е. скорость распространения света в среде должна быть всегда меньше скорости его распространения в вакууме.

Таким образом, к началу XVIII в. существовало два противоположных подхода к объяснению природы света: корпускулярная теория Ньютона и волновая теория Гюйгенса. Обе эти теории объясняли прямолинейное распространение света, законы отражения и преломления. XVIII век стал веком борьбы этих теорий. Экспериментальное доказательство справедливости волновой теории было получено в 18S1 г., когда Э. Фуко (и независимо от него А. Физо) измерил скорость распространения света в воде и получил значение, соответствующее формуле (170.2). К началу XIX столетия корпускулярная теория была полностью отвергнута и восторжествовала волновая теория. Большая заслуга в этом отношении принадлежит английскому физику Т. Юнгу, исследовавшему явления дифракции и интерференции, и французскому физику О. Френелю (1788—1827), дополнившему принцип Гюйгенса и объяснившему эти явления.

Несмотря на признание волновой теории, она обладала целым рядом недостатков. Например, явления интерференции, дифракции и поляризации могли быть объяснены только в том случае, если световые волны считать поперечными. С другой стороны, если световые волны — поперечные, то их носитель — эфир — должен обладать свойствами твердых тел. Попытка же наделить эфир свойствами твердого тела успеха не имела, так как эфир не оказывает заметного воздействия на движущиеся в нем тела. Далее эксперименты показали, что скорость распространения света в разных средах различна, поэтому эфир должен обладать в разных средах различными свойствами. Теория Гюйгенса не могла объяснить также физической природы наличия разных цветов.

Наука о свете накапливала экспериментальные данные, свидетельствующие о взаимосвязи световых, электрических и магнитных явлений, что позволило Максвеллу в 70-х годах прошлого столетия создать электромагнитную теорию света (см. § 139). Согласно электромагнитной теории Максвелла (см. (162.3)),

где с и v — соответственно скорости распространения света в вакууме и в среде с диэлектрической проницаемостью e и магнитной проницаемостью m. Это соотношение связывает оптические, электрические и магнитные постоянные вещества. По Максвеллу, е и и — величины, не зависящие от длины волны света, поэтому электромагнитная теория не могла объяснить явление дисперсии (зависимость показателя преломления от длины волны). Эта трудность была преодолена в конце XIX в. Лоренцем, предложившим электронную теорию, согласно которой диэлектрическая проницаемость е зависит от длины волны падающего света. Теория Лоренца ввела представление об электронах, колеблющихся внутри атома, в позволила объяснить явления испускания и поглощения света веществом.


Оцените книгу: 1 2 3 4 5