Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 16751


 

Задачи

 

          22.1. Определить, какую длину пути s1 пройдет фронт волны монохроматического света в вакууме за то же время, за которое он проходит путь s2=1.5 мм в стекле с показателем преломления n2 =1.5. [2.25 мм]

 

          22.2. В опыте Юнга щели, расположенные на расстоянии 0,3 мм, освещались монохроматическим светом с длиной волны 0,6 мкм. Определить расстояние от щелей до экрана, если ширина интерференционных полос равна 1 мм. [0,5 м]

 

          22.3. На стеклянный клин (n = 1,5) нормально падает монохроматический свет (l=698 нм). Определить угол между поверхностями клина, если расстояние между двумя соседними интерференционными минимумами в отраженном свете равно 2 мм. [0,4']

 

          22.4. Установка для наблюдения колец Ньютона освещается монохроматическим светом, падающим нормально. При заполнении пространства между линзой и стеклянной пластинкой прозрачной жидкостью радиусы темных колец в  отраженном свете уменьшились в 1,21 раза. Определить показатель преломления жидкости. (1,46]

 

          22.5. На линзу споказателем преломления 1,55 нормально падает монохроматический свет с длиной волны 0,55 мкм. Для устранения потерь отраженного света на линзу наносится тонкая пленка. Определить: 1) оптимальный показатель преломления пленки; 2) толщину пленки. [1) 1.24; 2) 0,111 мкм]

 

          22.6. В опыте с интерферометром Майкельсона для смещения интерференционной картины на  450 полос зеркало пришлось переместить на расстояние 0,135 мм. Определить длину волны падающего света. [0,6 мкм]

 

          22.7. На пути одного из лучей интерференционного рефрактометра поместили откачанную трубку длиной 10 см. При заполнении трубки хлором интерференционная картина сместилась на 131 полосу. Определить показатель преломления хлора, если наблюдение производится с монохроматическим светом с длиной волны 0,59 мкм. [1,000773]

 

 

 

 

 

 

 

 

 Глава 23

Дифракция света

 

§ 176. Принцип Гюйгенса — Френеля

 

Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле — любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д. Например, звук хорошо слышен за углом дома, т. е. звуковая волна его огибает.

Явление дифракции объясняется с помощью принципа Гюйгенса (см. § 170), согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени.

Пусть плоская волна нормально падает на отверстие в непрозрачном экране (рис. 256). Согласно Гюйгенсу, каждая точка выделяемого отверстием участка волнового фронта служит источником вторичных волн (в однородной изотропной среде они сферические). Построив огибающую вторичных волн для некоторого момента времени, видим, что фронт волны заходит в область геометрической тени, т. е. волна огибает края отверстия.

 

                                      Рис. 256

 

Явление дифракции характерно для волновых процессов. Поэтому если свет является волновым процессом, то для него должна наблюдаться дифракция, т. е. световая волна, падающая на границу какого-либо непрозрачного тела, должна огибать его (проникать в область геометрической тени). Из опыта, однако, известно, что предметы, освещаемые светом, идущим от точечного источника, дают резкую тень и, следовательно, лучи не отклоняются от их прямолинейного распространения. Почему же возникает резкая тень, если свет имеет волновую природу? К сожалению, теория Гюйгенса ответить на этот вопрос не могла.

Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде, а следовательно, и об интенсивности волн, распространяющихся по разным направлениям. Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.

Согласно принципу Гюйгенса — Френеля, световая волна, возбуждаемая каким-либо источником S, может быть представлена как результат суперпозиции когерентных вторичных волн, «излучаемых» фиктивными источниками. Такими источниками могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S. Обычно в качестве этой поверхности выбирают одну из волновых поверхностей, поэтому все фиктивные источники действуют синфазно. Таким образом, волны, распространяющиеся от источника, являются результатом интерференции всех когерентных вторичных волн. Френель исключил возможность возникновения обратных вторичных волн и предположил, что если между источником и точкой наблюдения находится непрозрачный экран с отверстием, то на поверхности экрана амплитуда вторичных волн равна нулю, а в отверстии — такая же, как при отсутствии экрана.


Оцените книгу: 1 2 3 4 5