Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 15671


В системе, в которой действуют также неконсервативные силы, например силы трения, полная механическая энергия системы не сохраняется. Следовательно, в этих случаях закон сохранения механической энергии несправедлив. Однако при «исчезновении» механической энергии всегда возникает эквивалентное количество энергии другого вида. Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом и заключается физическая сущность закона сохранения и превращения энергии — сущность неуничтожимости материи и ее движения.

 

§ 14. Графическое представление энергии

 

Во многих задачах рассматривается одномерное движение тела, потенциальная энергия которого является функцией лишь одной переменной (например, координаты х), т. е. П = П(х). График зависимости потенциальной энергии от некоторого аргумента называется потенциальной кривой. Анализ потенциальных кривых позволяет определить характер движения тела.

Будем рассматривать только консервативные системы, т. е. системы, в которых взаимные превращения механической энергии в другие виды отсутствуют. Тогда справедлив закон сохранения энергии в форме (13.3). Рассмотрим графическое представление потенциальной энергии для тела в однородном поле тяжести и дляупругодеформированного тела.

Потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли, согласно (12.7), П(h)=mgh. График данной зависимости П = П(h) — прямая линия, проходящая через начало координат (рис. 15), угол наклона которой к оси h тем больше, чем больше масса тела (так как tg a= mg).

 

Рис. 15

 

Пусть полная энергия тела равна Е (ее график — прямая, параллельная оси К). На высоте h тело обладает потенциальной энергией П, которая определяется отрезком вертикали, заключенным между точкой h на оси абсцисс и графиком П(h). Естестве но, что кинетическая энергия Т задается ординатой между графиком П(h) и горизонтальной прямой ЕЕ. Из рис. 15 следует, что если h=hmax, то Т=0 и П = E = mghmax,т. е. потенциальная энергия становится максимальной и равной полной энергии.

Из приведенного графика можно найти скорость тела на высоте h:

Подпись: откуда 

 Зависимость потенциальной энергии упругой деформации H=kx2/2 от деформации х имеет вид параболы (рис. 16), где график заданной полной энергии тела Е — прямая,  параллельная оси абсцисс х, а значения Г и П определяются так же, как на рис. 15. Из рис. 16 следует, что с возрастанием деформации х потенциальная энергия тела воз растает, а кинетическая — уменьшается. Абсцисса xmax определяет максимально возможную деформацию растяжения тела, а хmax — максимально возможную деформацию сжатия тела. Если х = ± xmax , то Т = 0 и П = E = kx2max/2, т. е. потенциальная энергия становится максимальной и равной полной энергии.

Из анализа графика на рис. 16 вытекает, что при полной энергии тела, равной Е, тело не может сместиться правее xmax и левее — xmax, так как кинетическая энергия не может быть отрицательной и, следовательно, потенциальная энергия не может быть больше полной энергии. В таком случае говорят, что тело находится в потенциальной яме с координатами

-          xmax £ x £ xmax

 

Рис. 16

 

В общем случае потенциальная кривая может иметь довольно сложный вид, например с несколькими чередующимися максимумами и минимумами (рис. 17). Проанализируем эту потенциальную кривую. Если Е — заданная полная энергия частицы, то частица может находиться только там, где П(x) £ E, т. е. в областях I и III. Переходить из области I в III и  обратно частица не может, так как ей препятствует потенциальный барьер CDG, ширина которого равна интервалу значений х, при которых Е < П, а его высота определяется разностью Пmax - E. Для того чтобы частица смогла преодолеть потенциальный барьер, ей необходимо сообщить дополнительную энергию, равную высоте барьера или превышающую ее. В области I частица с полной энергией Е оказывается «запертой» в потенциальной яме ABC и совершает колебания между точками с координатами xа и хс.

 

                

Рис. 17


Оцените книгу: 1 2 3 4 5