Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 16751


Из макроскопической электромагнитной теории Максвелла следует, что абсолютный показатель преломления среды

где e — диэлектрическая проницаемость среды, m — магнитная проницаемость. В оптической области спектра для всех веществ m » 1, поэтому

                                                  (186.1)

Из формулы (186.1) выявляются некоторые противоречия с опытом: величина n, являясь переменной (см. § 185), остается в то же время равной определенной постоянной - Öe. Кроме того, значения n, получаемые из этого выражения, не согласуются с опытными значениями. Трудности объяснения дисперсии света с точки зрения электромагнитной теории Максвелла устраняются электронной теорией Лоренца. В теории Лоренца дисперсия света рассматривается как результат взаимодействия электромагнитных волн с заряженными частицами, входящими в состав вещества и совершающими вынужденные колебания в переменном электромагнитном поле волны.

Применим электронную теорию дисперсии света для однородного диэлектрика, предположив формально, что дисперсия света является следствием зависимости e от частоты w световых волн. Диэлектрическая проницаемость вещества, по определению (см. (88.6) и (88.2)), равна

где æ — диэлектрическая восприимчивость среды, e0 — электрическая постоянная, Р — мгновенное значение поляризованности. Следовательно,

                               (186.2)

 т. е. зависит от Р. В данном случае основное значение имеет электронная поляризация, т. е. вынужденные колебания электронов под действием электрической составляющей поля волны, так как для ориентационной поляризации молекул частота колебаний в световой волне очень высока (v » 1015 Гц).

В первом приближении можно считать, что вынужденные колебания совершают только внешние, наиболее слабо связанные с ядром электроны — оптические электроны. Для простоты рассмотрим колебания только одного оптического электрона. Наведенный дипольный момент электрона, совершающего вынужденные колебания, равен р = ех, где е — заряд электрона, х — смещение электрона под действием электрического поля световой волны. Если концентрация атомов в диэлектрике равна n0 то мгновенное значение поляризованности

Подпись: Из (186.2) и 
(186.3) получим
                       (186.3) (186.4)

Следовательно, задача сводится к определению смещения х электрона под действием внешнего поля Е. Поле световой волны будем считать функцией частоты со, т. е. изменяющимся по гармоническому закону: E = E0coswt.

Уравнение вынужденных колебаний электрона (см. § 147) для простейшего случая (без учета силы сопротивления, обусловливающей поглощение энергии падающей волны) запишется в виде

                    (186.5)

где F0 = eE0 — амплитудное значение силы, действующей на электрон со стороны поля волны,  — собственная частота колебаний электрона, m — масса электрона. Решив уравнение (186.5), найдем e = n2 в зависимости от констант атома (е, m, w0) и частоты w внешнего поля, т. е. решим задачу дисперсии. Решение уравнения (186.5) можно записать в виде

Подпись: где                                                       (186.6)  (186.7)

  в чем легко убедиться подстановкой (см. (147.8)). Подставляя (186.6) и (186.7) в (186.4), получим

                                 (186.8)

Если в веществе имеются различные заряды eh совершающие вынужденные колебания с различными собственными частотами еа0|, то

                             (186.9)

 где m1 — масса i-го заряда.

Из выражений (186.8) и (186.9) вытекает, что показатель преломления л зависит от частоты w внешнего поля, т. е. полученные зависимости действительно подтверждают явление дисперсии света, хотя и при указанных выше допущениях, которые в дальнейшем надо устранить. Из выражений (186.8) и (186.9) следует, что в области от w = 0 до w = w0n2 больше единицы и возрастает с увеличением w (нормальная дисперсия); при w = w0n2 = ± ¥; в области от  w = w0 до w = ¥n2  меньше единицы и возрастает от - ¥ до 1 (нормальная дисперсия). Перейдя от n2 к n, получим, что график зависимости n от w имеет вид, изображенный на рис. 270.


Оцените книгу: 1 2 3 4 5