Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 16751


Температура вольфрамовой нити в вакуумных лампах не должна превышать 2450 К, поскольку при более высоких температурах происходит ее сильное распыление. Максимум излучения при этой температуре соответствует длине волны » 1,1 мкм, т. е. очень далек от максимума чувствительности человеческого глаза (» 0,55 мкм). Наполнение баллонов ламп инертными газами (например, смесью криптона и ксенона с добавлением азота) при давлении » 50 кПа позволяет увеличить температуру нити до 3000 К, что приводит к улучшению спектрального состава излучения. Однако светоотдача при этом не увеличивается, так как возникают дополнительные потери энергии из-за теплообмена между нитью и газом вследствие теплопроводности и конвекции. Для уменьшения потерь энергии за счет теплообмена и повышения светоотдачи газонаполненных ламп нить изготовляют в виде спирали, отдельные витки которой обогревают друг друга. При высокой температуре вокруг этой спирали образуется неподвижный слой газа и исключается теплообмен вследствие конвекции. Энергетический к.п.д. ламп накаливания в настоящее время не превосходит 5%.

 

§ 202. Виды фотоэлектрического эффекта.

              Законы внешнего фотоэффекта

 

Гипотеза Планка, блестяще решившая задачу тепловогоизлучения черного тела, получила подтверждение и дальнейшее развитие при объяснении фотоэффекта — явления, открытие и исследование которого сыграло важную роль в становлении квантовой теории. Различают фотоэффект внешний, внутренний и вентильный. Внешним фотоэлектрическим эффектом (фотоэффектом) называется испускание электронов веществом под действием электромагнитного излучения. Внешний фотоэффект наблюдается в твердых телах (металлах, полупроводниках, диэлектриках), а также в газах на отдельных атомах и молекулах (фотоионизация). Фотоэффект обнаружен (1887 г.) Г. Герцем, наблюдавшим усиление процесса разряда при облучении искрового промежутка ультрафиолетовым излучением.

Первые фундаментальные исследования фотоэффекта выполнены русским ученым А. Г. Столетовым. Принципиальная схема для исследования фотоэффекта приведена на рис. 289.

 

                                                Рис. 289

 

Два электрода (катод К из исследуемого металла и анод А — в схеме Столетова применялась металлическая сетка) в вакуумной трубке подключены к бата рее так, что с помощью потенциометра R можно изменять не только значение, но и знак подаваемого на них напряжения. Ток, возникающий при освещении катода монохроматическим светом (через кварцевое окошко), измеряется включенным в цепь миллиамперметром. Облучая катод светом различных длин волн, Столетов установил следующие закономерности, не утратившие своего значения до нашего времени: 1) наиболее эффективное действие оказывает ультрафиолетовое излучение; 2) под действием света вещество теряет только отрицательные заряды; 3) сила тока, возникающего под действием света, прямо пропорциональна его интенсивности.

Дж. Дж. Томсон в 1898 г. измерил удельный заряд испускаемых под действием света частиц, (по отклонению в электрическом и магнитном полях). Эти измерения показали, что под действием света вырываются электроны.

Внутренний фотоэффект — это вызванные электромагнитным излучением переходы электронов внутри полупроводника или диэлектрика из связанных состояний в свободные без вылета наружу. В результате концентрация носителей тока внутри, тела увеличивается, что приводит к возникновению фотопроводимости (повышению электропроводности полупроводника или диэлектрика при его освещении) или к возникновению э.д.с.

Вентильный фотоэффект, являющийся разновидностью внутреннего фотоэффекта, — возникновение э.д.с. (фото-э.д.с.) при освещении контакта двух разных полупроводников или полупроводника и металла (при отсутствии внешнего электрического поля). Вентильный фотоэффект открывает, таким образом, пути для прямого преобразования солнечной энергии в электрическую.

На рис. 289 приведена экспериментальная установка для исследования вольт-ампер ной характеристики фотоэффекта — зависимости фототока /, образуемого потоком электронов, испускаемых катодом под действием света, от напряжения U между электродами. Такая зависимость, соответствующая двум различным освещенностям Е, катода (частота света в обоих случаях одинакова), приведена на рис. 290. По мере увеличения U фототок постепенно возрастает, т. е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями. Максимальное значение тока Iнас — фототок насыщения — определяется таким значением U, при котором все электроны, испускаемые катодом, достигают анода:

где n — число электронов, испускаемых катодом в 1 с.

                                      Рис. 290


Оцените книгу: 1 2 3 4 5