Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 15782


                          (215.2)

Для простоты ограничимся рассмотрением только тех электронов, которые попадают на экран в пределах главного максимума. Из теории дифракции (см. § 179) известно, что первый минимум соответствует углу j, удовлетворяющему условию

                                           (215.3)

где Dх — ширина щели, а l — длина волны де Бройля. Из формул (215.2) и (215.3) получим

 

 где учтено, что для некоторой, хотя и незначительной, частя электронов, попадающих за пределы главного максимума, величина Dpx ³ p sinj. Следовательно, получаем выражение

 

 т. е. соотношение неопределенностей (215.1).

Невозможность одновременно точно определить координату и соответствующую проекцию импульса не связана с несовершенством методов измерения или измерительных приборов, а является следствием специфики микрообъектов, отражающей особенности их объективных свойств, а именно двойственной корпускулярно-волновой природы. Соотношение неопределенностей получено при одновременном использовании классических характеристик движения частицы (координаты, импульса) и наличия у нее волновых свойств. Так как в классической механике принимается, что измерение координатыи импульса может быть произведено с любой точностью, то соотношение неопределенностей является, таким образом, квантовым ограничением применимости классической механики к микрообъектам.

Соотношение неопределенностей, отражая специфику физики микрочастиц, позволяет оценить, например, в какой мере можно применять понятия классической механики к микрочастицам, в частности, с какой степенью точности можно говорить о траекториях микрочастиц. Известно, что движение по траектории характеризуется в любой момент времени определенными значениями координат и скорости. Выразим соотношение неопределенностей (215.1) в виде

                                                (215.4)

Из этого выражения следует, что чем больше масса частицы, тем меньше неопределенности ее координаты н скорости и, следовательно, с тем большей точностью можно применять к этой частице понятие траектории. Так, например, уже для пылинки массой 10-12 кг и линейными размерами 10-б м, координата которой определена с точностью до 0,01 ее размеров (Dх = 10-8 м), неопределенность скорости, по (215.4), Dvх = 6,62×10-34/(10-8×10-12) м/с = 6,62×-14 м/с, т. с. не будет сказываться при всех скоростях, с которыми пылинка может двигаться. Таким образом, для макроскопических тел их волновые свойства не играют никакой роли; координата и скорость макротел могут быть одновременно измерены достаточно точно. Это означает, что для описания движения макротел с абсолютной достоверностью можно пользоваться законами классической механики.

Предположим, пучок электронов движется вдоль оси х со скоростью v = 108 м/с, определяемой с точностью до 0,01% (Dvx » 104 м/с). Какова точность определения координаты электрона? По формуле (215.4),

т. е. положение электрона может быть определено с точностью до тысячных долей миллиметра. Такая точность достаточна, чтобы можно было говорить о движении электронов по определенной траектории, иными словами, описывать их движение законами классической механики.

Применим соотношение неопределенностей к электрону, движущемуся в атоме водорода. Допустим, что неопределенность координаты электрона Dx » 10-10 м (по рядка размеров самого атома, т. е. можно считать, что электрон принадлежит данному атому). Тогда, согласно (215.4),

Dvx = 6,62×10-34/(9,11×10-31×10-10) = 7,27×106 м/с. Используя законы классической физики, можно показать, что при движении электрона вокруг ядра по круговой орбите радиуса »0,5-10~10 м его скорость v » 2,3×106 м/с. Таким образом, неопределенность скорости в несколько раз больше самой скорости. Очевидно, что в данном случае нельзя говорить о движении электрона в атоме по определенной траектории, иными словами, для описания движения электрона в атоме нельзя пользоваться законами классической физики.

В квантовой теории рассматривается также соотношение неопределенностей для энергии Е и времени t, т. е. неопределенности этих величин удовлетворяют условию

                                         (215.5)

Подчеркнем, что DЕ — неопределенность энергии некоторого состояния системы, Dt — промежуток времени, в течение которого оно существует. Следовательно, система, имеющая среднее время жизни Dt, не может быть охарактеризована определенным значением энергии; разброс энергии DЕ = h/Dt возрастает с уменьшением среднего времени жизни. Из выражения (215.5) следует, что частота излученного фотона также должна иметь неопределенность Dv = DE/h, т. е. линии спектра должны характеризоваться частотой, равной v ± DЕ/h. Опыт действительно показывает, что все спектральные линии размыты; измеряя ширину спектральной линии, можно оценить порядок времени существования атома в возбужденном состоянии.

 

§ 216. Волновая функция и ее статистический

           

Оцените книгу: 1 2 3 4 5