Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 16751


Волновая функция удовлетворяет принципу суперпозиции: если система может находиться в различных состояниях, описываемых волновыми функциями Y1, Y2, …, Yn,…, то она также может находиться в состоянии Y, описываемом линейной комбинацией этих функций:

 

где Сn (n = 1, 2, ...) — произвольные, вообще говоря, комплексные числа. Сложение волновых функций (амплитуд вероятностей), а не вероятностей (определяемых квадратами модулей волновых функций) принципиально отличает квантовую теорию от классической статистической теории, в которой для независимых событий справедлива теорема сложения вероятностей.

Волновая функция Y, являясь основной характеристикой состояния микрообъектов, позволяет в квантовой механике вычислять средние значения физических величин, характеризующих данный микрообъект. Например, среднее расстояние árñ электрона от ядра вычисляют по формуле

 

где интегрирование производится, как и в случае (216.3).

 

 § 217. Общее уравнение Шредингера.

Уравнение Шредингера для стационарных

состояний

 

Статистическое толкование волн де Бройля (см. § 216) и соотношение неопределенностей Гсйзенберга (см. § 215) привели к выводу, чтоуравнением движения в квантовой механике, описывающим движение микрочастиц в различных силовых полях, должно быть уравнение, из которого бы вытекали наблюдаемые на опыте волновые свойства частиц. Основное уравнение должно быть уравнением относительно волновой функции Y(х, у, г, t), так как именно она, или, точнее, величина |Y|2, определяет вероятность пребывания частицы в момент времени t в объеме dV, т. е. в области с координатами х и x+dx, у и y+dy, z и z+dz. Так как искомое уравнение должно учитывать волновые свойства частиц, то оно должно быть волновым уравнением, подобно уравнению, описывающему электромагнитные волны.

Основное уравнение нерелятивистской квантовой механики сформулировано в 1926 г. Э. Шредингером. Уравнение Шредингера, как и все основные уравнения физики (например, уравнения Ньютона в классической механике и уравнения Максвелла для электромагнитного поля), не выводится, а постулируется. Правильность этого уравнения подтверждается согласием с опытом получаемых с его помощью результатов, что, в свою очередь, придает ему характер закона природы. Уравнение Шредингера имеет вид

               (217.1)

где ℏ=h/(2p), т — масса частицы, D — оператор Лапласа

i — мнимая единица, U (х, у, z, f) — потенциальная функция частицы в силовом поле, в котором она движется,  Y (х, у, z, t)искомая волновая функция частицы.

Уравнение (217.1) справедливо для любой частицы (со спином, равным 0; см. § 225), движущейся с малой (по сравнению со скоростью света) скоростью, т. е. со скоростью v<. Оно дополняется условиями, накладываемыми на волновую функцию: 1) волновая функция должна быть конечной, однозначной и непрерывной (см. § 216); 2) производные   должны быть непрерывны; 3) функция |Y| должна быть интегрируема; это условие в простейших случаях сводится к условию нормировки вероятностей (216.3).

Чтобы прийти к уравнению Шредингера, рассмотрим свободно движущуюся частицу, которой, согласно идее де Бройля, сопоставляется плоская волна. Для простоты рассмотрим одномерный случай. Уравнение плоской волны, распространяющейся вдоль оси х, имеет вид (см. § 154)

x(х, t) = Acos(wt—kx),  если в комплексной записи  x(x, t) = Aei(wt-kx). Следовательно, плоская волна де Бройля имеет вид

 

                                                                                           (217.2)

 

(учтено, что w = E/ℏ, k = p/ℏ). В квантовой механике показатель экспоненты берут со знаком минус, но поскольку физический смысл имеет только |Y|2, то это (см. (217.2)) несущественно. Тогда

Подпись: откуда         (217.3)

Используя взаимосвязь между энергией Е и импульсом р (Е = р2/(2m)) и подставляя выражения (217.3), получим дифференциальное уравнение

 

 которое совпадает с уравнением (217.1) для случая U = 0 (мы рассматривали свободную частицу). Если частица движется в силовом поле, характеризуемом потенциальной энергией U, то полная энергия Е складывается из кинетической и потенциальной энергий. Проводя аналогичные рассуждения в используя взаимосвязь между Е и р (для данного случая р2/(2m) = Е-U), придем к дифференциальному уравнению, совпадающему с (217.1).

Приведенные рассуждения не должны восприниматься как вывод уравнения Шредингера. Они лишь поясняют, как можно прийти к этому уравнению. Доказательством правильности уравнения Шредингера является согласие с опытом тех выводов, к которым оно приводит.


Оцените книгу: 1 2 3 4 5