Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 15709


и т.д.

Переход электрона из основного состояния в возбужденное обусловлен увеличением энергии атома и может происходить только при сообщении атому энергии извне, например за счет поглощения атомом фотона. Так как поглощающий атом находится обычно в основном состоянии, то спектр атома водорода должен состоять из линий, соответствующих переходам 1s®np (n=2, 3, ...), что находится в полном согласии с опытом.

 

 

 

 

 

 

 

             

 

                                      Рис. 304

 

§ 224. 1s-Состояние электрона в атоме водорода

 

1s-Состояние электрона в атоме водорода является сферически-симметричным, т. е. не зависит от углов q и j. Волновая функция ф электрона в этом состоянии определяется только расстоянием r электрона от ядра, т. е.

Y = Y100(r), где цифры в индексе соответственно указывают, что n = 1, l = 0 и ml = 0. Уравнению Шредингера для 1s-состояния электрона в атомеводорода удовлетворяет функция вида

                                               (224.1)

где, как можно показать, а = h24pe0/(me2) — величина, совпадающая с первым боровским радиусом а (см. (212.2)) для атома водорода, С — некоторая постоянная, определяемая из условия нормировки вероятностей (216.3).

Благодаря сферической симметрии Y-функции вероятность обнаружения электрона на расстоянии r одинакова по всем направлениям. Поэтому элемент объема dV, отвечающий одинаковой плотности вероятности, обычно представляют в виде объема сферического слоя радиусом r и толщиной dr. dV = 4pr2dr. Тогда, согласно условию нормировки вероятностей (216.3) с учетом (224.1),

После интегрирования получим

                                            (224.2)

 Подставив выражение (224.2) в формулу (224.1), определим нормированную волновую функцию, отвечающую 1s-состоянию электрона в атоме водорода:

                               (224.3)

Вероятность обнаружить электрон в элементе объема (см. (216.2)) равна

 

 Подставив в эту формулу волновую функцию (224.3), получим

 

 Вычислим те расстояния rmax от ядра, на которых электрон может быть обнаружен с наибольшей вероятностью. Исследуя выражение dW/dr на максимум, получим, что rmax = а. Следовательно, электрон может быть обнаружен с наибольшей вероятностью на расстояниях, равных боровскому радиусу, т. е. имеется равная и наибольшая вероятность обнаружения электрона во всех точках, расположенных на сферах радиуса а с центром в ядре атома. Казалось бы, квантово-механический расчет дает полное согласие с теорией Бора. Однако, согласно квантовой механике, плотность вероятности лишь при r = а достигает максимума, оставаясь отличной от нуля во всем пространстве (рис. 305).

 

                                                Рис. 305

 


Оцените книгу: 1 2 3 4 5