Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 15509


          30.1. Показать, что при малом параметре вырождения распределения Бозе — Эйнштейна и Ферми — Дирака переходят в распределение Максвелла — Больцмана.

 

          30.2. Определить функцию распределения для электронов, находящихся на энергетическом уровне Е, для случая (Е - ЕF) << kT, пользуясь: 1) статистикой Ферми —Дирака; 2) статистикой Максвелла — Больцмана.

 

          30.3. Определить в электрон-вольтах максимальную энергию Е фотона, который может возбуждаться в кристалле КС1, характеризуемом температурой Дебая TD=227 К. Фотон какой длины волны l обладал бы такой энергией? [E = 0,02 эВ; l = 63,5 мкм]

 

          30.4. Глубина потенциальной ямы металла составляет 11 эВ, а работа выхода 4 эВ. Определить полную энергию электрона на уровне Ферми. [E = - 4 эВ]

 

          30.5. Электрон с кинетической энергией 4 эВ попадает в металл, при этом его кинетическая энергия увеличивается до 7 эВ. Определить глубину потенциальной ямы. [3 эВ]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава 31

Элементы физики твердого тела

 

§ 240. Понятие о зонной теории твердых тел

 

Используя уравнение Шредингера — основное уравнение динамики в нерелятивистской квантовой механике, — в принципе можно рассмотреть задачу о кристалле, например, найти возможные значения его энергии, а также соответствующие энергетические состояния. Однако как в классической, так и в квантовой механике отсутствуют методы точного решения динамической задачи для системы многих частиц. Поэтому эта задача решается приближенно сведением задачи многих частиц к одноэлектронной задаче об одном электроне, движущемся в заданном внешнем поле. Подобный путь приводит к зонной теории твердого тела.

В основе зонной теории лежит так называемое адиабатическое приближение. Кван-тово-механическая система разделяется на тяжелые и легкие частицы — ядра и электроны. Поскольку массы и скорости этих частиц значительно различаются, можно считать, что движение электронов происходит в поле неподвижных ядер, а медленно движущиеся ядра находятся в усредненном поле всех электронов. Принимая, что ядра в узлах кристаллической решетки неподвижны, движение электрона рассматривается в постоянном периодическом поле ядер.

Далее используется приближение самосогласованного поля. Взаимодействие данного электрона со всеми другими электронами заменяется действием на него стационарного электрического поля, обладающего периодичностью кристаллической решетки. Это поле создается усредненным в пространстве зарядом всех других электронов и всех ядер. Таким образом, в рамках зонной теории многоэлектронная задача сводится к задаче о движении одного электрона во внешнем периодическом поле — усредненном и согласованном поле всех ядер и электронов.

Рассмотрим мысленно «процесс образования» твердого тела из изолированных атомов. Пока атомы изолированы, т. е. находятся друг от друга на макроскопических расстояниях, они имеют совпадающие схемы энергетических уровней (рис. 313).

                                         Рис. 313

По мере «сжатия» нашей модели до кристаллической решетки, т. е. когда расстояния между атомами станут равными межатомным расстояниям в твердых телах, взаимодействие между атомами приводит к тому, что энергетические уровни атомов смещаются, расщепляются и расширяются в зоны, образуется зонный энергетический спектр.    

Из рис. 313, на котором показано расщепление энергетических уровней в зависимости от расстояния r между атомами, видно, что заметно расщепляются и расширяются лишь уровни внешних, валентных электронов, наиболее слабо связанных с ядром и имеющих наибольшую энергию, а также более высокие уровни, которые в основном состоянии атома вообще электронами не заняты. Уровни же внутренних электронов либо совсем не расщепляются, либо расщепляются слабо. Таким образом, в твердых телах внутренние электроны ведут себя так же, как в изолированных атомах, валентные же электроны «коллективизированы» — принадлежат всему твердому телу.

Образование зонного энергетического спектра в кристалле является квантово-механическим эффектом и вытекает из соотношения неопределенностей. В кристалле валентные электроны атомов, связанные слабее с ядрами, чем внутренние электроны, могут переходить от атома к атому сквозь потенциальные барьеры, разделяющие атомы, т. е. перемещаться без изменений полной энергии (туннельный эффект, см. § 221). Это приводит к тому, что среднее время жизни т валентного электрона в данном атоме по сравнению с изолированным атомом существенно уменьшается и составляет примерно 10-15 с (для изолированного атома оно примерно 10-8 с). Время же жизни электрона в каком-либо состоянии связано с неопределенностью его энергии (шириной уровня) соотношением неопределенностей DE ~ h/t (см. (215.5)). Следовательно, если естественная ширина спектральных линий составляет примерно 10-7 эВ, то в кристаллах DE » 1¸10 эВ, т. е. энергетические уровни валентных электронов расширяются в зону дозволенных значений энергии.


Оцените книгу: 1 2 3 4 5