Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 16751


 

§ 242. Собственная проводимость

             полупроводников

 

Полупроводниками являются твердые тела, которые при Т = 0 характеризуются полностью занятой электронами валентной зоной, отделенной от зоны проводимости сравнительно узкой (DЕ порядка 1 эВ) запрещенной зоной (рис. 314, г). Своим названием они обязаны тому, что их электропроводность меньше электропроводности металлов и больше электропроводности диэлектриков.

В природе полупроводники существуют в виде элементов (элементы IV, V и VI групп Периодической системы элементов Менделеева), например Si, Ge, As, Se, Те, и химических соединений, например оксиды, сульфиды, селениды, сплавы элементов различных групп. Различают собственные и примесные полупроводники. Собственными полупроводниками являются химически чистые полупроводники, а их проводимость называется собственной проводимостью. Примером собственных полупроводников могут служить химически чистые Ge, Se, а также многие химические соединения: InSb, GaAs, CdS и др.

При 0 К и отсутствии других внешних факторов собственные полупроводники ведут себя как диэлектрики. При повышении же температуры электроны с верхних уровней валентной зоны I могут быть переброшены на нижние уровни зоны проводимости II (рис. 315).При наложении на кристалл электрического поля они перемещаются против поля и создают электрический ток. Таким образом, зона II из-за ее частичного «укомплектования» электронами становится зоной проводимости. Проводимость собственных полупроводников, обусловленная электронами, называется электронной проводимостью или проводимостью n-тнпа (от лат. negative — отрицательный).

                            

                                      Рис. 315

 

В результате тепловых забросов электронов из зоны I в зону II в валентной зоне возникают вакантные состояния, получившие название дырок. Во внешнем электрическом поле на освободившееся от электрона место — дырку — может переместиться электрон с соседнего уровня, а дырка появится в том месте, откуда ушел электрон, и т. д. Такой процесс заполнения дырок электронами равносилен перемещению дырки в направлении, противоположном движению электрона, так, как если бы дырка обладала положительным зарядом, равным по величине заряду электрона. Проводимость собственных полупроводников, обусловленная квазичастицами — дырками, называется дырочной проводимостью или проводимостью р-типа (от лат. positive — положительный).

Таким образом, в собственных полупроводниках наблюдаются два механизма проводимости: электронный и дырочный. Число электронов в зоне проводимости равно числу дырок в валентной зоне, так как последние соответствуют электронам, возбужденным в зону проводимости. Следовательно, если концентрации электронов проводимости и дырок обозначить соответственно nе и nр, то

                                           (242.1)

Проводимость полупроводников всегда является возбужденной, т. е. появляется только под действием внешних факторов (температуры, облучения, сильных электрических полей и т. д.).

В собственном полупроводнике уровень Ферми находится в середине запрещенной зоны (рис. 316).

                                                Рис. 316

 

Действительно, для переброса электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости затрачивается энергия активации, равная ширине запрещенной зоны DE. При появлении же электрона в зоне проводимости в валентной зоне обязательно возникает дырка. Следовательно, энергия, затраченная на образование пары носителей тока, должна делиться на две равные части. Так как энергия, соответствующая половине ширины запрещенной зоны, идет на переброс электрона и такая же энергия затрачивается на образование дырки, то начало отсчета для каждого из этих процессов должно находиться в середине запрещенной зоны. Энергия Ферми в собственном полупроводнике представляет собой энергию, от которой происходит возбуждение электронов и дырок.

Вывод о расположении уровня Ферми в середине запрещенной зоны собственного полупроводника может быть подтвержден математическими выкладками. В физике твердого тела доказывается, что концентрация электронов в зоне проводимости

                                 (242.2)

где E2 — энергия, соответствующая дну зоны проводимости (рис. 316), ЕF — энергия Ферми, Т — термодинамическая температура, C1 — постоянная, зависящая от температуры и эффективной массы электрона проводимости. Эффективная масса — величина, имеющая размерность массы и характеризующая динамические свойства квазичастиц — электронов проводимости и дырок. Введение в зонную теорию эффективной массы электрона проводимости позволяет, с одной стороны, учитывать действие на электроны проводимости не только внешнего поля, но и внутреннего периодического поля кристалла, а с другой стороны, абстрагируясь от взаимодействия электронов проводимости с решеткой, рассматривать их движение во внешнем поле как движение свободных частиц.


Оцените книгу: 1 2 3 4 5