Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 16751


 

 

 

 

                                      Рис. 335

 

Рассмотрим физические процессы, происходящие в p-n-переходе (рис. 336).

          

                                           Рис. 336

 

Пусть донорный полупроводник (работа выхода — Аn, уровень Ферми — ЕFn) приводится в контакт (рис. 336,б) с акцепторным полупроводником (работа выхода — Ар, уровень Ферми — ЕFp). Электроны из n-полупроводника, где их концентрация выше, будут диффундировать в p-полупроводник, где их концентрация ниже. Диффузия же дырок происходит в обратном направлении — в направлении р®n.

В n-полупроводнике из-за ухода электронов вблизи границы остается нескомпенсированный положительный объемный заряд неподвижных ионизованных донорных атомов. В n-полупроводнике из-за ухода дырок вблизи границы образуется отрицательный объемный заряд неподвижных ионизованных акцепторов (рис. 336, а). Эти объемные заряды образуют у границы двойной электрический слой, поле которого, направленное от n-области к p-области, препятствует дальнейшему переходу электронов в направлении n®р и дырок в направлении р®n. Есликонцентрации доноров и акцепторов в полупроводниках n- и р-типа одинаковы, то толщины слоев d1 и d2 (рис. 336, в), в которых локализуются неподвижные заряды, равны (d1 = d2).

При определенной толщине p-n-перехода наступает равновесное состояние, характеризуемое выравниванием уровней Ферми для обоих полупроводников (рис. 336, в). В области p-n-перехода энергетические зоны искривляются, в результате чего возникают потенциальные барьеры как для электронов, так и для дырок. Высота потенциаль ного барьера еj определяется первоначальной разностью положений уровня Ферми в обоих полупроводниках. Все энергетические уровни акцепторного полупроводника подняты относительно уровней донорного полупроводника на высоту, равную еj, причем подъем происходит на толщине двойного слоя d.

Толщина d слоя p-n-перехода в полупроводниках составляет примерно

10-б— 10-7 м, а контактная разность потенциалов — десятые доли вольт. Носители тока способны преодолеть такую разность потенциалов лишь при температуре в несколько тысяч градусов, т. е. при обычных температурах равновесный контактный слой является запирающим (характеризуется повышенным сопротивлением).

Сопротивление запирающего слоя можно изменить с помощью внешнего электрического поля. Если приложенное к p-n-переходу внешнее электрическое поле направлено от n-полупроводника к p-полупроводнику (рис. 337, а), т. е. совпадает с полем контактного слоя, то оно вызывает движение электронов в n-полупроводнике и дырок в p-полупроводнике от границы р-n-перехода в противоположные стороны.

                                      Рис. 337

 

 В результате запирающий слой расширится и его сопротивление возрастет. Направление внешнего поля, расширяющего запирающий слой, называется запирающим (обратным). В этом направлении электрический ток через p-n-переход практически не проходит. Ток в запирающем слое в запирающем направлении образуется лишь за счет неосновных носителей тока (электронов в p-полупроводнике и дырок в n-полупроводнике).

Если приложенное к p-n-переходу внешнее электрическое поле направлено противоположно полю контактного слоя (рис. 337, 6), то оно вызывает движение электронов в n-полупроводнике и дырок в p-полупроводнике к границе p-n-перехода навстречу друг другу. В этой области они рекомбинируют, толщина контактного слоя и его сопротивление уменьшаются. Следовательно, в этом направлении электрический ток проходит сквозь p-n-переход в направлении от p-полупроводника к n-полупроводнику; оно называется пропускным (прямым).

Таким образом, p-n-переход (подобно на контакте металл — полупроводник) об ладает односторонней (вентильной) проводимостью.

На рис. 338 представлена вольт-амперная характеристика p-n-перехода. Как уже указывалось, при пропускном (прямом) напряжении внешнее электрическое поле способствует движению основных носителей тока к границе p-n-перехода (см. рис. 337, б). В результате толщина контактного слоя уменьшается. Соответственно уменьшается и сопротивление перехода (тем сильнее, чем больше напряжение), а сила тока становится большой (правая ветвь на рис. 338). Это направление тока называется прямым.


Оцените книгу: 1 2 3 4 5