Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 15509


                                                  (262.1)

Первая стадия — это захват ядром X частицы а, приблизившейся к нему на расстояние действия ядерных сил (примерно 2×10-15 м), и образование промежуточного ядра С, называемого составным (или компаунд-ядром). Энергия влетевшей в ядро частицы быстро распределяется между нуклонами составного ядра, в результате чего оно оказывается в возбужденном состоянии. При столкновении нуклонов составного ядра один из нуклонов (или их комбинация, например дейтрон — ядро тяжелого изотопа водорода — дейтерия, содержащее один протон и один нейтрон) или a-частица может получить энергию, достаточную для вылета из ядра. В результате возможна вторая стадия ядерной реакции — распад составного ядра на ядро Y и частицу b.

В ядерной физике вводится характерное ядерное время — время, необходимое для пролета частицей расстояния порядка величины, равной диаметру ядра (d » 10-15 м). Так, для частицы с энергией 1 МэВ (что сответствует ее скорости v » 107 м/с) характер ное ядерное время t = 10-15 м/107 м/с = 10-22 с. С другойстороны, доказано, что время жизни составного ядра равно 10- 16—10- 12 с, т.е. составляет (106 —1010) т. Это же означает, что за время жизни составного ядра может произойти очень много столкновении нуклонов между собой, т. е. перераспределение энергии между нуклонами действительно возможно. Следовательно, составное ядро живет настолько долго, что полностью «забывает», каким образом оно образовалось. Поэтому характер распада составного ядра (испускание им частицы b) — вторая стадия ядерной реакции — не зависит от способа образования составного ядра — первой стадии.

Если испущенная частица тождественна с захваченной (b = а), то схема (262.1) описывает рассеяние частицы: упругое — при Еb = Еа, неупругое — при Еb ¹ Еа. Если же испущенная частица не тождественна с захваченной (b ¹ а), то имеем дело с ядерной реакцией в прямом смысле слова.

Некоторые реакции протекают без образования составного ядра, они называются прямыми ядерными взаимодействиями (например, реакции, вызываемые быстрыми нуклонами и дейтронами).

Ядерные реакции классифицируются по следующим признакам:

1) по роду участвующих в них частиц — реакции под действием нейтронов; реакции под действием заряженных частиц (например, протонов, дейтронов, a -частиц); реакции под действием g -квантов;

2) по энергии вызывающих их частиц — реакции при малых энергиях (порядка электрон-вольт), происходящие в основном с участием нейтронов; реакции при средних энергиях (до нескольких мегаэлектрон-вольт), происходящие с участием g -квантов и заряженных частиц (протоны, a -частицы); реакции при высоких энергиях (сотни и тысячи мегаэлектрон-вольт), приводящие к рождению отсутствующих в свободном состоянии элементарных частиц и имеющие большое значение для их изучения;

3) по роду участвующих в них ядер — реакции на легких ядрах (А < 50); реакции на средних ядрах (50 < A < 100); реакции на тяжелых ядрах (А > 100);

4) по характеру происходящих ядерных превращений — реакции с испусканием нейтронов; реакции с испусканием заряженных частиц; реакции захвата (в этих реакциях составное ядро не испускает никаких частиц, а переходит в основное состояние, излучая один или несколько g -квантов).

Первая в истории ядерная реакция осуществлена Э. Резерфордом (1919) при бомбардировке ядра азота a -частицами, испускаемыми радиоактивным источником:

 

 § 263. Позитрон. b+-Распад. Электронный захват

 

П. Дираком было получено (1928) релятивистское волновое уравнение для электрона, которое позволило объяснить все основные свойства электрона, в том числе наличие у него спина и магнитного момента. Замечательной особенностью уравнения Дирака оказалось то, что из него для полной энергии свободного электрона получались не только положительные, но и отрицательные значения. Этот результат мог быть объяснен лишь предположением о существовании античастицы электрона — позитрона.

Гипотеза Дирака, недоверчиво воспринимавшаяся большинством физиков, была блестяще подтверждена в 1932 г. К. Андерсоном (американский физик (р. 1905); Нобелевская премия 1936 г.), обнаружившим позитрон в составе космического излучения. Существование позитронов было доказано наблюдением их треков в камере Вильсона, помещенной в магнитном поле. Эти частицы в камере отклонялись так, как отклоняется движущийся положительный заряд. Опыты показали, что позитрон +0е — частица с массой покоя, в точности равной массе покоя электрона, и спином 1/2 (в единицах ), несущая положительный электрический заряд +е.

Жолио-Кюри — Фредерик (1900—1958) и Ирен (1897—1956), — бомбардируя раз личные ядра a-частицами (1934), обнаружили искусственно-радиоактивные ядра (см. § 255), испытывающие bˉ-распад, а реакции на В, А1 и Mg привели к искусственно-радиоактивным ядрам, претерпевающим b+-распад, или позтьолнный распад:

                         

 

 (Нобелевская премия 1956 г.) Наличие в этих реакциях позитронов доказано при изучении их треков в камере Вильсона, помещенной в магнитное поле.


Оцените книгу: 1 2 3 4 5