Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 16751


Элементарные частицы принято делить на три группы:

1) фотоны; эта группа состоит всего лишь из одной частицы — фотона — кванта электромагнитного излучения;

2) лептоны (от греч. «лептос» — легкий), участвующие только в электромагнитном и слабом взаимодействиях. К лептонам относятся электронное и мюонное нейтрино, электрон, мюон и открытый в 1975 г. тяжелый лептой — t-лептон, или таон, с массой примерно 3487me, а также соответствующие им античастицы. Название лeптонов связано с тем, что массы первых известных лептонов были меньше масс всех других частиц. К лептонам относится также таонное нейтрино, существование которого в последнее время также установлено;

3) aдроны (от греч. «адрос» — крупный, сильный). Адроны обладают сильным взаимодействием наряду с электромагнитным и слабым. Из рассмотренных выше частиц к ним относятся протон, нейтрон, пионы и каоны.

Для всех типов взаимодействия элементарных частиц выполняются законы сохранения энергии, импульса, момента импульса и электрического заряда.

Характерным признаком сильных взаимодействий является зарядовая независимость ядерных сил. Как уже указывалось (см. § 254), ядерныесилы, действующие между парами р - р, n – n, р - n, одинаковы. Поэтому если бы в ядре осуществлялось только сильное взаимодействие, то зарядовая независимость ядерных сил привела бы к одинаковым значениям масс нуклонов (протонов и нейтронов) и всех p-мезонов. Различие в массах нуклонов и соответственно я-мезонов обусловлено электромагнитным взаимодействием: энергии взаимодействующих заряженных и нейтральных частиц различны, поэтому и массы заряженных и нейтральных частиц оказываются неодинаковыми.

Зарядовая независимость в сильных взаимодействиях позволяет близкие по массе частицы рассматривать как различные зарядовые состояния одной и той же частицы. Так, нуклон образует дублет (нейтрон, протон), p-мезоны — триплет (p+,p-,p°) и т. д. Подобные группы «похожих» элементарных частиц, одинаковым образом участвующих в сильном взаимодействии, имеющие близкие массы и отличающиеся зарядами, называют изотопическими мультнплетами. Каждый изотопический мультиплет характеризуют изотопическим спином (нзоспнном) — одной из внутренних характеристик адронов, определяющей число (n) частиц в изотопическом мультиплете: n = 2I + 1. Тогда изоспин нуклона I = 1/2 (число членов в изотопическом мультиплете нуклона равно двум), изоспин пиона I = 1 (в пионном мультиплете n = 3) и т. д. Изотопический спин характеризует только число членов в изотопическом мультиплете и никакого отношения к рассматриваемому ранее спину не имеет.

Исследования показали, что во всех процессах, связанных с превращениями элементарных частиц, обусловленных зарядово-независимыми сильными взаимодействиями, выполняется закон сохранения изотопического спина. Для электромагнитных и слабых взаимодействий этот закон не выполняется. Так как электрон, позитрон, фотон, мюоны, нейтрино и антинейтрино в сильных взаимодействиях участия не принимают, то им изотопический спин не приписывается.

 

§ 273. Частицы и античастицы

 

Гипотеза об античастице впервые возникла в 1928 г., когда П. Дирак на основе релятивистского волнового уравнения предсказал существование позитрона (см. § 263), обнаруженного спустя четыре года К. Андерсоном в составе космического излучения.

Электрон и позитрон не являются единственной парой частица — античастица. На основе релятивистской квантовой теории пришли к заключению, что для каждой элементарной частицы должна существовать античастица (принцип зарядового сопряжения). Эксперименты показывают, что за немногим исключением (например, фотона и p0-мезона), действительно, каждой частице соответствует античастица.

Из общих положений квантовой теории следует, что частицы и античастицы должны иметь одинаковые массы, одинаковые времена жизни в вакууме, одинаковые по модулю, но противоположные по знаку электрические заряды (и магнитные моменты), одинаковые спины и изотопические спины, а также одинаковые остальные квантовые числа, приписываемые элементарным частицам для описания закономерностей их взаимодействия (лептонное число (см. § 275), барионное число (см. § 275), странность (см. § 274), очарование (см. § 275) и т.д.). До 1956 г. считалось, что имеется полная симметрия между частицами и античастицами, т. е. если какой-то процесс идет между частицами, то должен существовать точно такой же (с теми же характеристиками) процесс между античастицами. Однако в 1956 г. доказано, что подобная симметрия характерна только для сильного и электромагнитного взаимодействий и нарушается для слабого.

Согласно теории Дирака, столкновение частицы и античастицы должно приводить к их взаимной аннигиляции, в результате которой возникают другие элементарные частицы или фотоны. Примером тому является рассмотренная реакция (263.3) аннигиляции пары электрон — позитрон (-10е  + +10е ® 2g).

После того как предсказанное теоретически существование позитрона было подтверждено экспериментально, возник вопрос о существовании антипротона и антинейтрона. Расчеты показывают, что для создания пары частица — античастица надо затратить энергию, превышающую удвоенную энергию покоя пары, поскольку частицам необходимо сообщить весьма значительную кинетическую энергию. Для создания р - р̃-пары необходима энергия примерно 4,4 ГэВ. Антипротон был действительно обнаружен экспериментально (1955) при рассеянии протонов (ускоренных на крупней ем в то время синхрофазотроне Калифорнийского университета) на нуклонах ядер мишени (мишенью служила медь), в результате которого рождалась пара р - р̃.


Оцените книгу: 1 2 3 4 5