Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 16751


                                      Рис. 36

 

Задачи

 

4.1. С одного уровня наклонной плоскости одновременно начинают скатываться без скольжения сплошные цилиндр и шар одинаковых масс и одинаковых радиусов. Определить: 1) отношение скоростей цилиндра и шара на данном уровне; 2) их отношение в данный момент времени. [1) 14/15; 2) 14/15]

4.2. К ободу однородного сплошного диска радиусом R=0,5 м приложена постоянная касательная сила F= 100 Н. При вращении диска на него действует момент сил трения М=2 Н×м. Определить массу т диска, если известно, что его угловое ускорение e постоянно и равно 12 рад/с2. [32 кг]

 

4.3. Через неподвижный блок в виде однородного сплошного цилиндра массой m = 1 кг перекинута невесомая нить, к концам которой прикреплены тела массами m1 = 1 кг и m2 = 2 кг. Пренебрегая трением в оси блока, определить: 1) ускорение грузов; 2) отношения T2/T1 сил натяжения нити. [1) 2,8 м/с2; 2) 1,11]

 

          4.4. Скорость вращения колеса, моментинерции которого 2 кг×м2, вращающегося при торможении равнозамедленно, за время t=1 мин уменьшилась от n1 = 300 мин-1 до n2=180 мин-1. Определить: 1) угловое ускорение е колеса; 2) момент М силы торможения; 3) работу силы торможения. [1) 0.21 рад/с2; 2) 0,42 Н-м; 3) 630 Дж]

 

          4.5.Человек массой m = 80 кг, стоящbй на краю горизонтальной платформы массой M = 100 кг, вращающейся по инерции вокруг неподвижной вертикальной оси с частотой n1 = 10 мин-1, переходит к ее центру. Считая платформу круглым однородным диском, а  человека — точечной массой, определить, с какой частотой n2 будет тогда вращаться платформа. [26 мин-1]

 

4.6. Определить относительное удлинение алюминиевого стержня, если при его растяжении затрачена работа 62,1 Дж. Длина стержня 2 м, площадь поперечного сечения 1 мм2, модуль Юнга для алюминия E = 69 ГПа. []

 

 

 

 

 

 

 

 

 

 

 

 

Глава 5

Тяготение. Элементы теории поля

 

§ 22. Законы Кеплера. Закон всемирного

         тяготения

 

Еще в глубокой древности было замечено, что в отличие от звезд, которые неизменно сохраняют свое взаимное расположение в пространстве в течение столетий, планеты описывают среди звезд сложнейшие траектории. Для объяснения петлеобразного движения планет древнегреческий ученый К. Птоломей (II в. н. э.), считая Землю рас положенной в центре Вселенной, предположил, что каждая из планет движется по малому кругу (эпициклу), центр которого равномерно движется по большому кругу, в центре которого находится Земля. Эта концепция получила название птолемеевой геоцентрической системы мира.

В начале XVI в. польским астрономом Н. Коперником (1473—1543) обоснована гелиоцентрическая система (см. § 5), согласно которой движения небесных тел объясняются движением Земли (а также других планет) вокруг Солнца и суточным вращением Земли. Теория и наблюдения Коперника воспринимались как занимательная фантазия. К началу XVII столетия большинство ученых убедилось, однако, в справедливости гелиоцентрической системы мира. И. Кеплер (1571—1630), обработав и уточнив результаты многочисленных наблюдений датского астронома Т. Браге (1546—1601), изложил законы движения планет:

1. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

2. Радиус-вектор планеты за равные промежутки времени описывает одинаковые площади.

3. Квадраты периодов обращения планет вокруг Солнца относятся как кубы больших полуосей их орбит.

Впоследствии И. Ньютон, изучая движение небесных тел, на основании законов Кеплера и основных законов динамики открыл всеобщий закон всемирного тяготения: между любыми двумя материальными точками действует сила взаимного притяжения, прямо пропорциональная произведению масс этих точек (m1 и m20 и обратно пропорциональная квадрату расстояния между ними (г2):


Оцените книгу: 1 2 3 4 5