Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 15509


Первой космической (или круговой) скоростью u1 называют такую минимальную скорость, которую надо сообщить телу, чтобы оно могло двигаться вокруг Земли по круговой орбите, т. е. превратиться в искусственный спутник Земли. На спутник, движущийся по круговой орбите радиусом г, действует сила тяготения Земли, сообщающая ему нормальное ускорение u21/r . По второму закону Ньютона,

Если спутник движется вблизи поверхности Земли, тогда r » Ro (радиус Земли) и g=GM/R02 (см. (25.6)), поэтому у поверхности Земли

 

 Первой космической скорости недостаточно для того, чтобы тело могло выйти из сферы земного притяжения. Необходимая для этого скорость называется второй космической.

Второй космической (или параболической) скоростью v2 называют ту наименьшую скорость, которую надо сообщить телу, чтобы оно могло преодолеть притяжение Земли и превратиться в спутник Солнца, т. е. чтобы его орбита в поле тяготения Земли стала параболической. Для того чтобы тело (при отсутствии сопротивления среды) могло преодолеть земное притяжение и уйти в космическое пространство, необходимо, чтобыего кинетическая энергия была равна работе, совершаемой против сил тяготения:

 откуда

Третьей космической скоростью v3 называют скорость, которую необходимо сообщить телу на Земле, чтобы оно покинуло пределы Солнечной системы, преодолев притяжение Солнца. Третья космическая скорость v3=16,7 км/с. Сообщение телам таких больших начальных скоростей является сложной технической задачей. Ее первое теоретическое осмысление начато К. Э. Циолковским, им была выведена уже рассмотренная нами формула (10.3), позволяющая рассчитывать скорость ракет.

Впервые космические скорости были достигнуты в СССР: первая — при запуске первого искусственного спутника Земли в 1957 г., вторая — при запуске ракеты в 1959 г. После исторического полета Ю. А. Гагарина в 1961 г. начинается бурное развитие космонавтики.

 

§ 27. Неинерциальные системы отсчета.

           Силы инерции

 

Как уже отмечалось (см. § 5, 6), законы Ньютона выполняются только в инерциальных системах отсчета. Системы отсчета, движущиеся относительно инерциальной системы с ускорением, называются неинерциальными. В неинерциальных системах законы Ньютона, вообще говоря, уже несправедливы. Однако законы динамики можно применять и для них, если кроме сил, обусловленных воздействием тел друг на друга, ввести в рассмотрение силы особого рода — так называемые силы терцин.

Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции). Силы инерции Fин при этом должны быть такими, чтобы вместе с силами F, обусловленными воздействием тел друг на друга, они сообщали телу ускорение а', каким оно обладает в неинерциальных системах отсчета, т. е.

 

Так как F = ma (а — ускорение тела в инерциальной системе отсчета), то

                                                                   (27.1)

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае нужно учитывать следующие случаи проявления этих сил: 1) силы инерции при ускоренном поступательном движении системы отсчета; 2) силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета; 3) силы инерции, действующие на тело, движущееся во вращающейся системе отсчета.

Рассмотрим эти случаи.

1. Силы терцин при ускоренном поступательном движения системы отсчета. Пусть на тележке к штативу на нити подвешен шарик массой т (рис. 40). Пока тележка покоится или движется  равномерно и прямолинейно, вить, удерживающая шарик, занимает вертикальное положение и сила тяжести Р уравновешивается силой реакции нити Т.

                                                Рис. 40

 


Оцените книгу: 1 2 3 4 5