Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 15509


Уравнения (1.1) и соответственно (1.2) называются кинематическими уравнениями движения материальной точки.

Число независимых координат, полностью определяющих положение точки в пространстве, называется числом степеней свободы. Если материальная точка свободно движется в пространстве, то, как уже было сказано, она обладает тремя степенями степенями свободы, если вдоль некоторой линии, то одной степенью свободы.

 

Рис. 1

 

Исключая t в уравнениях (1.1) и (1.2), получим уравнение траектории движения материальной точки. Траектория движения материальной точки — линия, описываемая этой точкой в пространстве. В зависимости от формы траектории движение может быть прямолинейным или криволинейным.

Рассмотрим движение материальной точки вдоль произвольной траектории (рис. 2). Отсчет времени начнем с момента, когда точка находилась в положении А. Длина участка траектории АВ, пройденного материальной точкой с момента начала отсчета времени, называется длиной пути aj и является скалярной функцией времени: Ds = Ds(t). Вектор Dr = r – r0, проведенный из начального положения движущейся точки в положение ее вданный момент времени (приращение радиуса-вектора точки за рассматриваемый промежуток времени), называется перемещением.

 

                                 

 

Рис. 2

 

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и модуль перемещения |Dr| равен пройденному пути Ds.

 

§ 2. Скорость

 

Для характеристики движения материальной точки вводится векторная величина — скорость, которой определяется как быстрота движения, так и его направление в данный момент времени.

Пусть материальная точка движется по какой-либо криволинейной траектории так, что в момент времени t ей соответствует радиус-вектор г0 (рис. 3). В течение малого промежутка времени Dt точка пройдет путь Ds и получит элементарное (бесконечно малое) перемещение Dг.

 

                                              

 

 

                                                Рис. 3

 

Вектором средней скорости называется отношение приращения Dг радиуса-вектора точки к промежутку времени Dt:

(2.1)

Направление вектора средней скорости совпадает с направлением Dг. При неограниченном уменьшении Dt средняя скорость стремится к предельному значению, которое называется мгновенной скоростью v:

 

Мгновенная скорость v, таким образом, есть векторная величина, равная первой производной радиуса-вектора движущейся точки по времени. Так как секущая совпадает с касательной, то вектор скорости v направлен по касательной к траектории в сторону движения (рис. 3). По мере уменьшения Dt путь Ds все больше будет приближаться к |Dг|, поэтому модуль мгновенной скорости

 

Таким образом, модуль мгновенной скорости равен первой производной пути по времени:


Оцените книгу: 1 2 3 4 5