Название: Курс физики - Трофимова Т.И.

Жанр: Физика

Рейтинг:

Просмотров: 15509


                                                 (2.2)

При неравномерном движении модуль мгновенной скорости с течением времени изменяется. В данном случае пользуются скалярной величиной — средней скоростью неравномерного движения:

 

Из рис. 3 вытекает, что > ||, так как Ds >|Dг|, и только в случае прямолинейного движения

Если выражение ds=vdt (см. формулу (2.2)) проинтегрировать по времени в пределах от t до t+Dt, то найдем длину пути, пройденного точкой за время Dt:

(2.3)

В случае равномерного движения числовое значение мгновенной скорости постоянно; тогда выражение (2.3) примет вид

Длина пути, пройденного точкой за промежуток времени от t\ до fa, дается интегралом

 

§ 3. Ускорение и его составляющие

 

В случае неравномерного движения важно знать, как быстро изменяется скорость с течением времени.Физической величиной, характеризующей быстроту изменения скорости по модулю и направлению, является ускорение.

Рассмотрим плоское движение, т. е. движение, при котором все участки траектории точки лежат в одной плоскости. Пусть вектор v задает скорость точки А в момент времени t. За время Dt движущаяся точка перешла в положение В и приобрела  скорость, отличную от v как по модулю, так и направлению и равную v1 = v + Dv. Перенесем вектор v1 в точку А и найдем Dv (рис. 4).

                                          Рис. 4

 

Средним ускорением неравномерного движения в интервале от t до t+Dr называется векторная величина, равная отношению изменения скорости Ду к интервалу времени Dг:                                                                                     

Мгиовеивым ускорением а (ускорением) материальной точки в момент време ни t будет предел среднего ускорения:

 

Таким образом, ускорение а есть векторная величина, равная первой производной скорости по времени.

Разложим вектор Dv на две составляющие. Для этого из точки А (рис. 4) по направлению скорости v отложим вектор , по модулю равный v1. Очевидно, что вектор , равный Dvt, определяет изменение скорости за время Dt по модулю: Dvt = v1 - v. Вторая же составляющая Dvn вектора Dv характеризует изменение скорости за время Dt по направлению.

Тангенциальная составляющая ускорения

 

т. е. равна первой производной по времени от модуля скорости, определяя тем самым быстроту изменения скорости по модулю.

Найдем вторую составляющую ускорения. Допустим, что точка В достаточно близка к точке А, поэтому Ds можно считать дугой окружности некоторого радиуса г, мало отличающейся от хорды АВ. Тогда из подобия треугольников АОВ и EAD следует , но так как AB=vDt, то


Оцените книгу: 1 2 3 4 5