Название: Биология - Ярыгин В.Н.

Жанр: Биология

Рейтинг:

Просмотров: 9941


 

 

Рис. 24.2. Круговорот воды в биосфере

 

Под влиянием этого процесса происходит постепенное разрушение литосферы, перенос ее компонентов в глубины морей и океанов.

На создание органического вещества расходуется всего 0,1—0,2% солнечной энергии, достигающей поверхности планеты. Благодаря этой энергии осуществляется значительный объем работы по перемещению химических элементов.

В качестве примеров биотического круговорота рассмотрим круговороты углерода и азота в биосфере (рис. 24.3; 24.4). Круговорот углерода начинается с фиксации атмосферного диоксида углерода в процессе фотосинтеза. Часть образовавшихся при фотосинтезе углеводов используют сами растения для получения энергии, часть потребляется животными. Углекислый газ выделяется в процессе дыхания растений и животных. Мертвые растения и животные разлагаются, углерод их тканей окисляется и возвращается в атмосферу. Аналогичный процесс происходит и в океане.

Круговорот азота также охватывает все области биосферы (рис. 24.4). Хотя его запасы в атмосфере практически неисчерпаемы, высшие растения могут использовать азот только после соединения его с водородом или кислородом. Исключительно важную роль в этом процессе играют азотфиксирующие бактерии. При распаде белков этих микроорганизмов азот снова возвращаетсяв атмосферу.

Показателем масштаба биотического круговорота служат темпы оборота углекислого газа, кислорода и воды. Весь кислород атмосферы проходит через организмы примерно за 2 тыс. лет, углекислый газ — за 300 лет, а вода полностью разлагается и восстанавливается в биотическом круговороте за 2 млн. лет (рис. 24.5).

 

Рис. 24.3. Круговорот углерода в биосфере

 

Рис. 24.4. Круговорот азота в биосфере

 

Благодаря биотическому круговороту биосфере присущи определенные геохимические функции: газовая — биогенная миграция газов в результате фотосинтеза и азотфиксации; концентрационная — аккумуляция в своих телах живыми организмами химических элементов, рассеянных во внешней среде; окислительно-восстановительная — превращение веществ, содержащих атомы с переменной валентностью (например, Fе, Mn); биохимическая — процессы протекающие в живых организмах.

Стабильность биосферы. Биосфера представляет собой сложную экологическую систему, работающую в стационарном режиме. Стабильность биосферы обусловлена тем, что результаты активности трех групп организмов, выполняющих разные функции в биотическом круговороте,— продуцентов (автотрофы), потребителей (гетеротрофы) и деструкторов (минерализующие органические остатки) — взаимоуравновешиваются. То, что в биосфере поддерживается постоянство ее главных характеристик (гомеостаз), не исключает способности ее к эволюции.

 

 

Рис. 24.5. Темпы циркуляции веществ в биосфере

24.3. ЭВОЛЮЦИЯ БИОСФЕРЫ

 

Эволюция биосферы на Протяжении большей части ее истории осуществлялась под влиянием двух главных факторов: естественных геологических и климатических изменений на планете и изменений видового состава и количества живых существ в процессе биологической эволюции. На современном этапе в третичном периоде к ним присоединился третий фактор — развивающееся человеческое общество.

Этапы возникновения жизни, пути и механизмы ее эволюционного развития рассмотрены выше (см. гл. 1). Жизнь зародилась на Земле свыше 3,5 млрд. лет назад. Первыми живыми существами были анаэробы, которые получали энергию путем брожения. Так как брожение представляет собой относительно малопродуктивный способ энергообеспечения, примитивная жизнь не могла эволюционировать далее одноклеточной формы организации. Питание таких примитивных организмов зависело от опускавшихся на дно водоемов органических веществ, синтезируемых в поверхностных слоях воды абиогенным способом.

Недостаток органических веществ создал давление отбора, приведшее к возникновению фотосинтеза. Прогрессивное увеличение кислорода в воде за счет жизнедеятельности фотосинтезирующих организмов и его диффузии в атмосферу вызвало изменения в химическом составе оболочек Земли, прежде всего атмосферы, что в свою очередь сделало возможным и развитие более сложно организованных живых форм и быстрое распространение Жизни по планете. По мере увеличения содержания кислорода в атмосфере формируется достаточно мощный слой озона, защищающий поверхность Земли от проникновения жесткого ультрафиолетового излучения. В таких условиях жизнь смогла продвинуться к поверхности моря. Развитие механизма аэробного дыхания сделало возможным появление многоклеточных организмов. Примечательно, что первые такие организмы появились после того, как концентрация кислорода в атмосфере планеты достигла примерно 3%, что произошло около 600 млн. лет назад (начало кембрия).

Благодаря способности фотосинтезирующих морских организмов продуцировать такое количество кислорода, которое превышало потребности в нем обитателей планеты, стало возможным возникновение в процессе эволюции организмов более высокого уровня структурно-физиологической организации, их широкое расселение и проникновение Жизни в различные сферы обитания. В течение палеозойской эры живые существа не только заселили все моря, но и вышли на сушу. Развитие зеленых растений обеспечило образование больших количеств кислорода и органических веществ, что создавало благоприятные условия для последующей прогрессивной эволюции.

В середине палеозоя темпы потребления кислорода живыми организмами и расход его в абиотических процессах, а также темпы его образования сравнялись. Содержание кислорода в атмосфере начиная с этого периода истории Земли стабилизировалось на уровне примерно 20%.


Оцените книгу: 1 2 3 4 5