Название: Биология с основами экологии - Пехов А. П.

Жанр: Биология

Рейтинг:

Просмотров: 1749


 

Одна из важнейших особенностей полигибридных скрещиваний заключается в том, что увеличение количества генов, вовлекаемых в скрещивания, сопровождается снижением частоты появления среди гибридов F^ организмов исходных родительских типов и увеличением количества организмов, несущих рекомбинантные сочетания генов. Например, с вовлечением в скрещивание одного гена (одной пары аллелей) встречается по одному организму, похожему на организмы каждого исходного родительского типа среди 4 гибридов F2, с вовлечением в скрещивание двух генов (двух пар аллелей) — среди 16 гибридов, с вовлечением в скрещивание трех генов (трех пар аллелей) — среди 64 гибридов и т. д. В тех случаях, когда количество генов (n), вовлекаемых в скрещивания, составляет десятки и даже сотни, общее количество генотипов (3n), в том числе гомозиготных (2n), которое может возникать в потомстве одного гетерозиготного организма, достигает огромных размеров. Благодаря независимому перераспределению генов (свободной рекомбинации генов) половой процесс создает огромное генетическое разнообразие организмов.

Подведем итоги рассмотренных в этом разделе экспериментов Г. Менделя. По данным дигибридных скрещиваний для передачи генов от одного поколения организмов к другому характерно их независимое расщепление инезависимое перераспределение. Наряду с независимым расщеплением в дигибридных скрещиваниях выявляется и другая особенность. Растения F1, возникшие в результате слияния гамет RY и гу при скрещивании исходных линий, дающих круглые желтые и шероховатые зеленые семена, в свою очередь продуцируют не только комбинации родительских гамет RY и гу, но и гаметы нового типа, несущие рекомбинантные фракции генов Ry и rY, притом в равном количестве. Что касается растений F1, возникших после скрещивания линий, дающих шероховатые желтые и круглые зеленые семена, в результате слияния их гамет Yr и yR, то они кроме этих гамет тоже дадут гаметы, несущие рекомбинантные гены YR и уг, и тоже в равном количестве. Следовательно, образование гибридами F^ одинакового количества родительских и рекомбинантных гамет является неотъемлемой особенностью независимого расщепления и перераспределения двух пар генов.

Исследуя скрещивания, в которых исходные растения несли по три пары разных генов, Г. Мендель тоже обнаружил это явление, т. е. тригибриды F1 имея генотип RrYyCc, продуцировали гаметы восьми разных типов (RYC, RYc, RyC, Rye, rYC, rYc, ryC, rye), но в равных количествах.

Итак, генные пары двух скрещиваемых организмов расщепляются (сегрегируют) независимо одна от другой и перераспределяются, подвергаясь свободной рекомбинации между собой, причем гибридные организмы в процессе их гаметогенеза дают начало комбинациям родительских гамет и рекомбинациям гамет в равных количествах. Данное правило, установленное Г. Менделем, в настоящее время называют вторым законом наследственности (вторым законом Г. Менделя), законом независимого перераспределения генных аллелей или законом рекомбинации генов.

 

§ 53 Хромосомные основы расщепления

         и независимого перераспределения генов

 

Цитологические основы расщепления генов (первого закона наследственности) определяются парностью хромосом, поведением хромосом диплоидных клеток при мейозе (спаривании и расхождении гомологичных хромосом) и последующим оплодотворением половых клеток, хромосомы которых несут по одному аллелю генных пар. У соматических клеток один аллель одной пары генов располагается на одном члене хромосомной пары, тогда как другой аллель представлен в другом члене хромосомной пары.

Расщепление генов происходит при гаметогенезе во время мей-отических делений. При мейозе хромосомы расходятся и проходят в разные гаметы, причем каждая гамета получает по одной хромосоме (гомологу) из пары хромосом. Независимое распределение генов также может быть объяснено поведением хромосом при мейозе (рис. 127).

Поскольку соматические клетки содержат по два набора хромосом, каждый из которых происходит от одного из родителей, то при мейозе расходятся каждая из хромосомных пар, а вместе с этим расходятся и генные пары. Важно то, что хромосомные гомологи затем перераспределяются и проходят в разные гаметы независимо один от другого. Но т. к. передвижение при редукционном делении двух отцовских или двух материнских хромосом к одному и тому же полюсу или одновременно прохождение в гаметы той или иной отцовской хромосомы вместе с какой-либо материнской хромосомой является делом случая, то гаметы несут отцовские и материнские хромосомы в самых различных смесях (сочетаниях). Следовательно, гаметы несут также разные сочетания отцовских и материнских генов. То, что аллели одной и той же хромосомной пары обязательно расходятся, определяется расположением их в одном месте (локусе) на хромосомной паре. Таким образом, закономерности расщепления и независимого перераспределения генов определяются передачей от поколений к поколениям хромосом.

 

 

§54 Наследственность, сцепленная с полом

 

Половые различия раздельнополых организмов связаны с различиями между их хромосомами, однако они по-разному проявляются у организмов разных видов.

У насекомых рода Protenor различия между хромосомами мужских и женских особей заключаются в том, что у мужских особей хромосомы представлены нечетным (меньшим) количеством (13), тогда как у женских особей — четным (14), т. е. количеством, большим на одну хромосому, которая является добавочной. Эта добавочная хромосома и определяет пол унаследовавшей ее особи в результате оплодотворения яйцеклетки мужской половой клеткой.

Однако у многих раздельнополых растений, беспозвоночных, животных, рыб, птиц и всех млекопитающих различия между хромосомами мужских и женских особей связаны не с количеством хромосом, а с их качественным составом. Например, соматические клетки мужских и женских особей D. melanogaster несут по четыре пары хромосом. Как у самцов, так и самок три пары хромосом являются одинаковыми и их называют аутосомами, но члены четвертой пары у самцов и самок неодинаковы по строению, ибо у самок оба члена этой пары являются прямыми палочковидными образованиями (Х-хромосомы), тогда как у самцов один член пары является прямым палочковидным образованием (Х-хромосома), а второй — изогнутым (Y-хромосома). Все одинаковые хромосомы у самцов и самок называют аутосомами (А), тогда как хромосомы Х и Y получили название половых хромосом. Все яйцеклетки плодовой мушки несут четыре хромосомы (ЗА+Х), из которых три являются аутосомами, четвертая — Х-хромосомой. Напротив, сперматозоиды также обладают четырьмя хромосомами, но они наполовину несут Х-хромосому (ЗА+Х) и наполовину — Y-хромосому (3A+Y). Оплодотворение любой яйцеклетки сперматозоидом, обладающим Х-хромосомой, дает начало зиготе женского типа (6А+ХХ), тогда как оплодотворение любой яйцеклетки сперматозоидом, обладающим Y-хромосомой, дает начало зиготе мужского типа (6A+XY).


Оцените книгу: 1 2 3 4 5