Название: Биология с основами экологии - Пехов А. П.

Жанр: Биология

Рейтинг:

Просмотров: 1749


Классический генетический анализ используют в генетике растений и животных, а также их культивируемых клеток. Однако по отношению к высшим организмам тех видов, которым присуще длительное время между генерациями и малое количество потомства на пару, он либо невозможен, либо очень затруднен. Из-за невозможности классического генетического анализа организмов ряда видов изучение их наследственности проводят с помощью других методов. Например, для изучения наследственности человека используют метод родословных (генеалогический анализ), цитогенетический, популяционный, близнецовый и другие современные методы (см. гл. XIII).

Длительное время для изучения генетического контроля развития животных организмов использовали D. melanogaster. Однако, начиная с 60-х гг., в качестве модельного объекта в генетике развития стали использовать круглого гельминта Caenorhabditis (рис. 104). Имея длину в 1 мм, эта нематода состоит примерно из 1000 клеток. Ее генетический аппарат представлен 6 парами гомологичных хромосом, на которых локализовано около 3000 генов. В гаплоидном состоянии геном состоит из 8´107 пар нуклеотидов.

Что касается растений, то для изучения генетики развития этих организмов используют травянистое растение Arabidopsis thaliana (рис. 105). Преимущества этогорастения в качестве экспериментальной модели заключаются в том, что его легко культивировать в лабораторных условиях и что оно имеет очень короткий срок вегетации (всего лишь 5 недель). Кроме того, геном этого растения состоит из 7´107 нуклеотидных пар.

У всех этих организмов идентифицированы различные мутации, созданы их геномные библиотеки и секвенировано большинство генов. Секвенирование стало методом изучения тонкого строения генов у всех организмов.

Развитие молекулярной биологии привело к разработке методологии генетической инженерии, которая нашла исключительно широкое применение в животноводстве, растениеводстве, а также в изучении нормальной и патологической наследственности человека (см. раздел V).

 

Вопросы для обсуждения

 

1. Дайте определение наследственности и объясните, каким образом наследственность определяет непрерывность жизни?

2. Является ли изменчивость свойством живого и если да, то почему?

3. Какие формы изменчивости вы знаете?

4. Что важнее, наследственность или среда?

5. Дайте определение генотипа и фенотипа.

6. В чем заключается классический генетический анализ и применим ли он для изучения наследственности всех организмов? Каковы его возможности и ограничения?

7. Для чего используют в изучении наследственности и изменчивости экспериментальные модели?

8. Какие организмы используются в генетике в качестве моделей для изучения генетических закономерностей?

9. На каких уровнях изучают наследственность и изменчивость?

10. Каково значение молекулярно-генетических исследований наследственности и изменчивости?

11. Можно ли изучать тонкое строение генов, не прибегая к скрещиваниям?

 

Литература

 

Дубинин Н. П. Генетика. Кишинев: Штиинца. 1986. 534 стр.

Грин Н., Стаут У., Тейлор Д. Биология. М.: Мир. 1996. 386 стр.

Schleif R. Genetics and Molecular Biology. The Johns Hopkins University Press. 1993. 698 pp.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Глава X

ГЕНЕТИЧЕСКИЙ МАТЕРИАЛ

 

В соответствии с современными представлениями генетическим материалом являются нуклеиновые кислоты.

Нуклеиновые кислоты были обнаружены в ядрах клеток в 1869 г. швейцарским физиологом Фридрихом Мишером. Это открытие является настолько важным, что оно заслуживает приведения здесь цитаты из работы Ф. Мишера, в которой он описывал свои опыты, а именно: «Обрабатывая клетки гноя слабыми щелочными растворами, я получил в результате нейтрализации раствора осадок, который не растворялся ни в воде, ни в уксусной кислоте, ни в разведенной соляной кислоте, ни в обычном солевом растворе и который не мог принадлежать ни к одному из белков, известных в настоящее время». Обнаруженное вещество Ф. Мишер назвал «нуклеином». Как считают, он не мог знать, что открыл ДНК и что оказался в начале исследований ДНК. Но, определяя заслуги Ф. Мишера в качестве первооткрывателя нуклеиновых кислот, нельзя не отметить, что первое предположение о роли нуклеиновых кислот в качестве генетического материала было сформулировано в 1914 г. доцентом Петербургского университета А. Щепотьевым.


Оцените книгу: 1 2 3 4 5