Название: Биогеография - Второв П.П.

Жанр: Биология

Рейтинг:

Просмотров: 1529


Около 50 лет назад русский минералог и геохимик В.И.Вернадский на основе большого описательного и расчетного материала показал, что вся совокупность организмов нашей планеты - живое вещество, несмотря на ничтожную по сравнению с неживым веществом массу, представляет мощный глобальный фактор, преобразующий всю земную поверхность, воды и атмосферу. Всю толщу горных пород, вод и атмосферы, которые изменились под воздействием живого вещества, В.И.Вернадский назвал биосферой.

Живое вещество обладает огромной геохимической активностью прежде всего за счет различных катализаторов (ферментов), ускоряющих в тысячи раз различные реакции при обычных температурах.

За длительный срок своего существования жизнь коренным образом изменила состав атмосферы, вод, осадочных пород. Кислород, уголь, известняки, почвенный покров - все это прямой результат деятельности мириадов живых существ.

Общий слой «влияния жизни» (т. е. границы биосферы по вертикали) имеет мощность 20-30 км, однако заселены живыми организмами лишь толща вод и преимущественно тонкая планетарная «пленка». В последнее время нередко именно ее и называют биосферой, хотя здесь лучше употреблять выражение «обитаемая биосфера».

Обитаемая биосфера может быть определена как гигантская планетарная экосистема. В разныхпубликациях ее называют биогеосферой, ландшафтной оболочкой. В сущности понятие «биосфера» совпадает с понятием «географическая оболочка».

 

РАЗДЕЛЕНИЕ ЭКОСИСТЕМЫ НА БЛОКИ

 

Если при разделении экосистемы с функциональных позиций начинать с самых крупных блоков, или элементов, то первый шаг такого анализа приведет к выявлению трех элементов:

1 - радиации Солнца (источник превратимой энергии), 2 - массы неживых компонентов, 3 - массы живых компонентов экосистемы. Какого типа связи объединяют указанные элементы? Прежде всего блоки 2 и 3 характеризуются энергетическими и вещественными (материальными) взаимосвязями. От блока 1 к блокам

2 и 3 идут односторонние энергетические воздействия, которые после ряда трансформаций уходят за пределы системы в виде тепла (длинноволнового излучения).

Последующее пристальное рассмотрение экосистемы приводит к расчленению описанных выше элементов на более дробные. В частности, при характеристике компонентов биогеоценоза В.Н. Сукачев выделял следующие компоненты (природные явления): атмосферу, горные породы, гидрологические условия, растительность, животный мир, микроорганизмы и почвы. Видимо, при функциональном подходе на сходном уровне подробности следует несколько видоизменить набор компонентов. Так, зеленые и незеленые растения, относящиеся к различным трофическим (энергетическим) уровням экосистемы, целесообразно рассматривать отдельно, в разных блоках. Гидрологические условия - результат тех или иных свойств, присущих ряду элементов системы. Поэтому они сами по себе могут в ряде случаев и не рассматриваться в виде элемента системы (если их выделять таким образом, то лучше в виде элемента системы рассматривать воду).

Учитывая характер трансформации энергии и вещества, можно выделить следующие элементы, или блоки, экосистемы:

А - радиацию Солнца, В - атмосферу (конкретнее - определенную смесь газов, взвешенных твердых и жидких веществ, взаимодействующую с другими блоками экосистемы), С - почвогрунт (без учета живых организмов), D - автотрофные, а точнее - фотоавтотрофные, организмы, Е - хемоавтотрофные организмы, F - хемогеторотрофов-биофагов первого порядка, G - хемогетеротрофов-сапрофагов, Н - прототрофов-сапрофагов, К - хемогетеротрофов-биофагов высших порядков (в основном - второго и третьего). Если первые три блока не требуют особых пояснений, то остальные нуждаются в более подробной характеристике.

Фотоавтотрофные организмы - это зеленые растения, которые характеризуются тем, что в качестве источника энергии для построения органических веществ (для формирования биомассы) используют солнечную радиацию, в качестве источника углерода - углекислый газ атмосферы и почвы, а как источник азота - минеральные соединения.

Хемоавтотрофные организмы в качестве источника энергии используют энергию химических связей (минеральные вещества), переводя их в более простые соединения. Эти же соединения используются и для пополнения значительной части вещественного бюджета, который целиком основывается на неорганических источниках. Группа представлена хемосинтезирующими бактериями.

Прототрофы в качестве источника энергии и углерода используют органические вещества. Основная масса их — сапрофаги. В качестве источников азота они могут довольствоваться минеральными веществами. Эта группа состоит из грибов, актиномицетов и некоторых бактерий.

Хемогетеротрофы - наиболее сложная в функциональном отношении группа. Она же объединяет значительно большее число видов организмов, чем все остальные группы вместе взятые. В качестве источника энергии, углерода и азота хемогетеротрофы используют органические вещества других живых существ, включая их остатки и после отмирания, и метаболиты, выделенные во внешнюю среду. Хемогетеротрофы включают всех животных, большую часть бактерий и растения (в том числе высшие), ведущие паразитическое существование.

В эту схему не включены фотогетеротрофы, занимающие промежуточные положения между хемогетеротрофами и фотоавтотрофами, так как их удельный вес в природе обычно мал. Кроме того, они чаще попеременно входят то в один, то в другой блок, в зависимости от условий среды. К фотогетеротрофам относятся и некоторые простейшие. С долей условности, видимо, можно причислить к ним и лишайники, которые по существу представляют собой симбиотическое сожительство водорослей и грибов.

Хемогетеротрофов можно на определенном этапе рассматривать как один блок, но мы показали их в виде нескольких: биофагов первого и высших порядков и сапрофагов. Указанные три группы занимают весьма различные позиции в системе трофических уровней и обладают разными регуляторными возможностями. Так, деятельность сапрофагов, приводящая к освобождению веществ минерального питания, положительно влияет на блок фотоавтотрофов. Влияние же на последних биофагов первого порядка, стоящих на том же трофическом (энергетическом) уровне, гораздо сложнее и в общем отрицательно. Это определяет далеко идущие последствия, приводя к сопряженному филогенезу (коэволюции) и сильно осложненным взаимным реакциям.


Оцените книгу: 1 2 3 4 5