Название: Безопасность жизнедеятельности - Белов С.В.

Жанр: БЖД

Рейтинг:

Просмотров: 15418


Между манометром и сосудом должен быть установлен трехходовый кран или заменяющее устройство, позволяющее проводить периодическую проверку манометра с помощью контрольного.

Проверка манометров с их опломбированием и клеймением должна производится не реже одного раза в 12 месяцев. Кроме того, не реже одного раза в 6 месяцев владельцем сосуда должна производиться дополнительная проверка рабочих манометров контрольными с записью результатов в журнал контрольных проверок.

Манометр не допускается к применению в случаях, когда:

— отсутствует пломба или клеймо с отметкой о проведении проверки;

— просрочен срок проверки;

— стрелка при его отключении не возвращается в нулевое положение на величину, превышающую половину допускаемой погрешности для данного прибора;

— разбито стекло или имеются повреждения, которые могут отразиться на правильности его показаний.

Сосуды, работающие при изменяющейся температуре стенок, должны быть снабжены приборами для контроля скорости и равномерности прогрева по длине и высоте сосуда и реперами для контроля тепловых перемещений.

Необходимость оснащения сосудов указанными приборами и ре-"Фами, а также допустимая скорость прогрева и охлаждения сосудов Определяются разработчиком проекта и указываются изготовителем в депортахсосудов или инструкциях по монтажу и эксплуатации. Каждый сосуд должен быть снабжен предохранительными устроили от повышения давления выше допустимого значения. В качестве предохранительных устройств применяются:

- пружинные предохранительные клапаны;

- рычажно-грузовые предохранительные клапаны;

— импульсные предохранительные устройства, состоящие из главного предохранительного клапана и управляющего импульсного клапана прямого действия;

— предохранительные устройства с разрушающимися мембранами (предохранительные мембраны);

— другие устройства, применение которых согласовано с Госгор-технадзором России.

Распространенным средством защиты технологического оборудования от разрушения при взрывах являются предохранительные мембраны (разрывные, ломающиеся, срезные, хлопающие, специальные) и взрывные клапаны (рис. 5.4, 5.5).

                               

       Рис. 5.4. Линзовый зажим разрывной мембраны:

1 — мембрана; 2 — коническая шайба; 3 — торцы сбросной магистрали;

4—соединительные фланцы

 

 

                               

Рис. 5.5. Взрывной клапан с наружными периферийными пружинами:

/—защищаемый сосуд; 2—запорный диск; 3—пружина; 4—кольцо; 5—штанга

 

Достоинством предохранительных мембран является предельная простота их конструкции, что характеризует их как самые надежные из всех существующих средств взрывозащиты. Кроме того, мембраны практически не имеют ограничений по пропускной способности. Существенным недостатком предохранительных мембран является то, что после срабатывания защищаемое оборудование остается открытым, это, как правило, приводит к остановке технологического процесса и к выбросу в атмосферу всего содержимого аппарата. При разгерметизации технологического оборудования нельзя исключить возможность вторичных взрывов, которые бывают обусловлены подсосом атмосферного воздуха внутрь аппарата через открытое отверстие мембраны.

Использование на технологическом оборудовании взрывных клапанов дает возможность устранить эти негативные последствия, так как после срабатывания и сброса отверстие вновь закрывается и таким образом не вызывает необходимости немедленной остановки оборудования и проведения восстановительных работ. К недостаткам взрывных клапанов следует отнести их большую инерционность по сравнению с мембранами, сложность конструкции, а также недостаточную герметичность, ограничивающую область их применения (они могут использоваться для взрывозащиты оборудования, работающего при Нормальном давлении).

Широко используются разрывные мембраны, изготовляемые из тонколистового металлического проката. Конструктивное оформление узла зажима мембраны может быть различным (шип — паз, конический или линзовый зажим, см. рис. 5.4).

При нагружении рабочим давлением мембрана испытывает большие пластические деформации и приобретает ярко выраженный купол, по форме очень близкий к сферическому сегменту. Чаще сего куполообразную форму мембране придают заранее при изготовлении, подвергая ее нагружению давлением, составляющим около 90 % разрывного. При этом фактически исчерпывается почти весь запас пластических деформаций материала, поэтому еще больше увеличивается быстродействие мембраны.

Разрывное давление Рс такой оболочки (давление срабатывания мембраны)

Рс = 2Δ0sврR                                                                      (5.1)

 

где Δ0 —толщина материала мембраны; sвр —временное сопротивление материала при растяжении (предел прочности); R — радиус купола. Минимальный (на пределе разрыва мембраны) радиус купола  , где d — относительное удлинение при разрыве.

Для определения времени полного раскрытия сбросного отверстия мембран можно использовать соотношение:

 


Оцените книгу: 1 2 3 4 5