Название: Концепции современного естествознания

Жанр: Культурология

Рейтинг:

Просмотров: 2463


6.4. современный катализ

 

Общие сведения

 

Катализ – ускорение химической реакции в присутствии веществ – катализаторов, которые взаимодействуют с реагентами, но в реакции не расходуются и не входят в состав конечных продуктов. Благодаря катализу повышается скорость реакций даже при небольших температурах, активизируется образование только определенных продуктов из ряда возможных. Катализ – основа многих химико-технологических процессов, например, производства серной кислоты, некоторых полимеров, аммиака и др. Большинство превращений, происходящих в живых организмах, также являются каталитическими (ферментативными).

Хорошо известна реакция между кислородом и водородом, приводящая к образованию воды:

 

2H2 + O2 → 2H2O

 

Смесь двух объемов газообразного водорода и одного объема кислорода, называемая гремучим газом, способна реагировать со взрывом и выделением, большого количества тепла. Однако реакция протекает настолько медленно, что даже после продолжительной выдержки данной смеси вряд ли удастся обнаружить хоть какое-нибудь количество воды. Скорость реакции существенно повышается при нагревании реакционной смеси или при воздействии на нее электромагнитного излучения. Аналогичное действие оказывает и введение катализатора, который помогает преодолетьэнергетический барьер, препятствующий началу реакции.

Некоторые промышленные химические процессы проводятся в газовой форме при наличии твердых катализаторов. Однако на практике чаще всего осуществляются жидкофазные каталитические процессы. В последние десятилетия не менее 20\% всей промышленной химической продукции производят каталитическим способом.

К довольно эффективным катализаторам относятся ионообменные смолы, металлоорганические соединения, мембранные катализаторы. Каталитическим свойством обладают многие химические элементы периодической системы Менделеева, среди которых важнейшую роль играют металлы платиновой группы и редкоземельные металлы.

Некоторые катализаторы позволяют уменьшить в химических превращениях не только температуру, но и давление. Например, разработанный в нашей стране катализатор дал возможность синтезировать метанол при давлении 50 атм. и температуре 260–290° С, в то время как раньше такой синтез проводился при давлении до 1000 атм. и температуре 300–400° С.

Ряд катализаторов существенно ускоряет химические реакции. С участием катализатора скорость некоторых реакций увеличивается в 10 млрд. раз. Селективные катализаторы оказывают такое же сильное влияние, но лишь на одну из многих конкурирующих реакций. Стереоселективные катализаторы позволяют не просто контролировать состав конечного продукта, но и способствуют образованию молекул определенной формы и зачастую сильно влияют на физические свойства продукта, такие как прочность, твердость, пластичность, а также на активность биологических объектов.

Каталитические процессы можно классифицировать с учетом их физической и химической природы. Различают несколько основных видов катализа: гетерогенный и гомогенный, электрокатализ, фотокатализ и ферментативный катализ. В гетерогенном катализе химическая реакция происходит в поверхностных слоях на границе раздела твердого тела и газообразной или жидкой смеси реагентов. При гомогенном катализе исходные реагенты находятся в одной фазе (газовой или жидкой). В электрокатализе реакция протекает на поверхности электрода в контакте с раствором и под действием электрического тока. В нем в отличие от гетерогенного катализа возможно управление химическим процессом при изменении электрического тока. При фотокатализе химическая реакция стимулируется энергией поглощенного излучения, и она может происходить на поверхности твердого тела (в том числе и на поверхности электрода) или в жидком растворе. Процесс с участием ферментов называется ферментативным катализом. Ему присущи свойства как гетерогенного, так и гомогенного катализа. Ферменты – это большие белковые структуры, способные удерживать молекулы реагента в ждущем состоянии до начала реакции. Фермент, кроме того, собирает подходящее химическое окружение, катализирующее нужную реакцию по прибытии партнера.

 

Гетерогенный катализ

 

Одна из важных задач гетерогенного катализа – увеличение эффективной поверхности катализатора. Удельная поверхность катализаторов, применяемых в промышленности, составляют около 150 м2/г. Некоторые катализаторы на основе активированного угля или молекулярных сит имеют удельную поверхность до 1000 м2/г. Кроме большой активной поверхности, катализаторы должны иметь небольшую массу, высокую прочность и обтекаемость. Совокупностью таких свойств обладают перспективные катализаторы – искусственные цеолиты (молекулярные сита) и пористая керамика.

Гетерогенный катализ известен давно – еще со времен шведского химика И.Я. Берцелиуса (1799–1848), но только недавно – примерно 20 лет назад – уникальные методы и приборы открыли путь для экспериментального исследования химических явлений на поверхности. В результате гетерогенного катализа получается из элементных азота и водорода аммиак NH3 – важнейший компонент удобрений. При повышенной температуре N2 и Н2 могут реагировать с образованием NH3 на совершенных кристаллах железного катализатора. Грань кристалла железа (111) примерно в 430 раз активнее, чем грань (110) и в 13 раз активнее, чем грань (100). Синтез аммиака – один из первых каталитических процессов, внедренный в крупное промышленное производство. Обычно катализатором для такого синтеза служат мелкие частицы железа – тонко-дисперсное железо, осажденное на оксиде алюминия с добавкой оксида калия. Синтез происходит при 500° С. В последнее время проводится поиск катализатора, который позволил бы снизить температуру синтеза.

К настоящему времени освоены многие новые каталитические процессы для промышленного производства ценных продуктов (табл. 6.1).

Таблица 6.1.

 

Современные экспериментальные средства позволяют проследить за поведением атомов на поверхности твердого катализатора. Поверхностные атомы обладают способностью образовывать химические связи и влиять на химические свойства молекул. Поэтому поведение реагентов на поверхности твердого катализатора может резко отличаться от поведения тех же молекул в растворе или газовой фазе.

Одно из перспективных направлений повышения эффективности катализа заключается в разработке молекулярных cит – природных или синтетических материалов, содержащих алюминий, кремний и кислород (алюмосиликаты) и включающих мельчайшие пустоты и каналы, образующие пористую структуру. Попавшие внутрь пустот и каналов молекулы вступают в химическую реакцию, которая при обычных условиях возможна только при высокой температуре. Форма и размер внутренних полостей не только влияют на селекцию реагентов, но и ограничивают размер частиц конечного продукта, т.е. молекулярные сита – селективные катализаторы. Они применяются, например, для производства высокооктанового бензина в результате крекинга и для превращения полученного из древесины метанола в бензин.

Давно известно, что чрезвычайно малых размеров частицы, состоящие всего лишь из нескольких тысяч атомов, могут активно катализировать превращения углеводородов (производство топлив) и реакцию синтеза аммиака из азота (производство удобрений). Такие частицы обладают каталитическими свойствами, если они получены из металлов: кобальт, никель, родий, палладий и платина. Все эти металлы являются очень дорогостоящими, поэтому разработка более дешевых и широко доступных катализаторов представляет практический интерес.

Производству нужны такие катализаторы, которые позволили бы превращать имеющееся в изобилии и дешевое сырье в более ценные и полезные соединения, а именно превращать азот в нитраты (производство минеральных удобрений), уголь в углеводороды (производство топлива), соединения с одним атомом углерода – моноксид в диоксид углерода, метан и метанол в соединения с двумя атомами углерода – этилен, этан, уксусную кислоту и этиленгликоль (промышленное сырье).

Для сохранения окружающей среды нужны не только каталитические конверторы для очистки выхлопных газов автомобилей, но и эффективные катализаторы для удаления оксидов серы из заводских дымов, очистки воды и т. п.

 

Гомогенный катализ

 

Часто гомогенные катализаторы представляют собой сложные металлосодержащие молекулярные соединения, структура которых позволяет осуществить тонкую настройку реакционной способности реагентов и достичь высокой селективности. Один из крупномасштабных промышленных процессов с применением гомогенного катализа – это частичное окисление параксилола и превращение его в терефталевую кислоту (см. рис. 6.2). В таком процессе катализатором служат соли кобальта и марганца. Большая часть конечного продукта подвергается самополимеризации с этиленгликолем и используется для производства полиэфирных тканей, корда для шин, контейнеров для соды и многих других полезных изделий. В промышленном процессе производства уксусной кислоты из метанола и моноксида углерода роль катализатора выполняет дикарбонилдииодид родия, позволяющий получить около 99\% целевого продукта.

 

В качестве промышленного сырья было бы весьма заманчиво использовать некоторые широко распространенные вещества, включая азот, моноксид и диоксид углерода и метан. Однако это относительно инертные вещества, и для их участия в реакции нужны эффективные катализаторы. Для такой цели весьма перспективно применение растворимых металло-органических соединений. Например, при помощи растворимых соединений молекулярного азота с оловом и молибденом удается осуществить синтез аммиака. Химические связи углерод–водород в соединениях типа метана и этана, нереакционных в обычных условиях, разрываются родий-, рений-, иридийорганическими комплексами, и тем самым повышается их реакционная способность.

Одно из направлений катализа связано с синтезом молекул, ядро которых состоит из нескольких химически связанных атомов металла. Из таких молекул формируются кластеры, размеры которых больше, чем молекул гомогенных катализаторов, но меньше, чем частиц металла, служащих гетерогенным катализатором. Во многих металлах – активных гетерогенных катализаторах,– а именно в таких, как родий, платина, осмий, рутений и иридий обнаруживается способность к образованию кластеров. Существует ряд кластеров, получивших название кубаны. Ядро молекул кубанов состоит из четырех атомов металла и четырех атомов серы, расположенных в вершинах куба. Структура кубаны получена для железа, никеля, вольфрама и других металлов. К кубанам относится, например, производное железа – ферродоксин, являющийся функциональной частью белков, катализирующих реакции с переносом электронов в биологических системах.

Многие биологические молекулы имеют одну из двух возможных геометрических структур, представляющих зеркальное отражение друг друга. Обычно лишь одна из таких хиральных структур биологически активна. Если сложная молекула содержит, например, семь хиральных углеродных атомов, а в процессе синтеза образуются все возможные хиральные структуры, то получится смесь 27 = 128 продуктов, из которых 127 могут быть неактивными или, еще хуже, давать нежелательные эффекты. Поэтому важно уметь синтезировать на каждом хиральном центре нужную структуру. Катализатор, обеспечивающий такой синтез, называется стереоселективным. В качестве примера можно привести синтез леводофы – соединения в виде стереоизомера аминокислоты (см. рис. 6.3). Молекула леводофы получается при стереоселективном присоединении водорода к двойной углерод-углеродной связи. Используемый при этом катализатор – растворимое соединение фосфина и родия – приводит к образованию конечного продукта с выходом 96\%. Леводофа – эффективное средство лечения болезни Паркинсона.

 

Электрокатализ и фотокатализ

 

Благодаря химической модификации каталитически активных электродных поверхностей создается возможность управления химическими процессами, происходящими на границе раздела жидкий раствор – электроды. Химическая модификация электродов стимулирует вполне определенные реакции. Она осуществляется в результате технологической операции осаждения тонкопленочных слоев, широко применяемой для формирования рабочих элементов интегральных схем. Например, нанесенный тонкопленочный слой рутения в качестве каталитического покрытия существенно сокращает потребление энергии в производстве хлора и щелочи.

Электрохимическая ячейка может содержать один или два полупроводниковых электрода, поглощающих электромагнитное излучение. В результате возникает фотокатализ, стимулирующий окислительно-восстановительные процессы на границе раздела электрод– раствор. Подобный эффект наблюдается на границе раствор–частица. Фотокаталитические процессы представляют не только научный, но и практический интерес. Например, на поверхности диоксида титана происходит деструкция (разрушение структуры) токсичных веществ в стоках, в частности, в стоках цианидов. Известна идея фотокаталитического использования солнечной энергии для производства кислорода и водорода из воды. А водород как экологически чистое топливо (при его сгорании образуется вода) мог бы заменить истощающееся и загрязняющее атмосферу нефтяное топливо.

 

Искусственные ферменты

 

Ферменты – естественные биологические катализаторы, представляющие собой сложнейшие молекулярные системы. Современные экспериментальные средства позволяют не только определить состав подобного рода систем, но и управлять их молекулярной топологией, что очень важно при создании искусственных ферментов. Один из способов конструирования искусственных ферментов заключается в формировании в больших молекулах профилированных полостей с последующим их заполнением каталитическими связывающими центрами.

Искусственные ферменты иногда называют биоимитаторами. К настоящему времени получены биоимитаторы ферментов, биологически синтезирующих аминокислоты. Синтезированы ферменты, структурно родственные природному соединению – витамину В и обладающие высокой селективностью и даже стереоселективностью. Получены биоимитаторы нескольких ферментов, участвующих в переваривании белков, и соединения, катализирующие расщепление РНК, в которые введены каталитические группы, присутствующие в ферменте рибонуклеазе. Синтезирован имитатор гемоглобина – переносчик кислорода. Структура активной части гемоглобина изображена на рис. 6.4. Интенсивные работы по созданию искусственных ферментов продолжаются. В результате появляются новые биоимитаторы ферментов.

 

 


Оцените книгу: 1 2 3 4 5